ﻻ يوجد ملخص باللغة العربية
A frequency square is a square matrix in which each row and column is a permutation of the same multiset of symbols. A frequency square is of type $(n;lambda)$ if it contains $n/lambda$ symbols, each of which occurs $lambda$ times per row and $lambda$ times per column. In the case when $lambda=n/2$ we refer to the frequency square as binary. A set of $k$-MOFS$(n;lambda)$ is a set of $k$ frequency squares of type $(n;lambda)$ such that when any two of the frequency squares are superimposed, each possible ordered pair occurs equally often. A set of $k$-maxMOFS$(n;lambda)$ is a set of $k$-MOFS$(n;lambda)$ that is not contained in any set of $(k+1)$-MOFS$(n;lambda)$. For even $n$, let $mu(n)$ be the smallest $k$ such that there exists a set of $k$-maxMOFS$(n;n/2)$. It was shown in [Electron. J. Combin. 27(3) (2020), P3.7] that $mu(n)=1$ if $n/2$ is odd and $mu(n)>1$ if $n/2$ is even. Extending this result, we show that if $n/2$ is even, then $mu(n)>2$. Also, we show that whenever $n$ is divisible by a particular function of $k$, there does not exist a set of $k$-maxMOFS$(n;n/2)$ for any $kle k$. In particular, this means that $limsup mu(n)$ is unbounded. Nevertheless we can construct infinite families of maximal binary MOFS of fixed cardinality. More generally, let $q=p^u$ be a prime power and let $p^v$ be the highest power of $p$ that divides $n$. If $0le v-uh<u/2$ for $hge1$ then we show that there exists a set of $(q^h-1)^2/(q-1)$-maxMOFS$(n;n/q)$.
A emph{frequency square} is a matrix in which each row and column is a permutation of the same multiset of symbols. We consider only {em binary} frequency squares of order $n$ with $n/2$ zeroes and $n/2$ ones in each row and column. Two such frequenc
We give a simple construction of an orthogonal basis for the space of m by n matrices with row and column sums equal to zero. This vector space corresponds to the affine space naturally associated with the Birkhoff polytope, contingency tables and La
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
Nielsen proved that the maximum number of maximal independent sets (MISs) of size $k$ in an $n$-vertex graph is asymptotic to $(n/k)^k$, with the extremal construction a disjoint union of $k$ cliques with sizes as close to $n/k$ as possible. In this
A finite subset $X$ of the Euclidean space is called an $m$-distance set if the number of distances between two distinct points in $X$ is equal to $m$. An $m$-distance set $X$ is said to be maximal if any vector cannot be added to $X$ while maintaini