ترغب بنشر مسار تعليمي؟ اضغط هنا

Orthogonal bases for transportation polytopes applied to Latin squares, magic squares and Sudoku boards

153   0   0.0 ( 0 )
 نشر من قبل Gregory S. Warrington
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a simple construction of an orthogonal basis for the space of m by n matrices with row and column sums equal to zero. This vector space corresponds to the affine space naturally associated with the Birkhoff polytope, contingency tables and Latin squares. We also provide orthogonal bases for the spaces underlying magic squares and Sudoku boards. Our construction combines the outer (i.e., tensor or dyadic) product on vectors with certain rooted, vector-labeled, binary trees. Our bases naturally respect the decomposition of a vector space into centrosymmetric and skew-centrosymmetric pieces; the bases can be easily modified to respect the usual matrix symmetry and skew-symmetry as well.



قيم البحث

اقرأ أيضاً

We prove a conjecture by Garbe et al. [arXiv:2010.07854] by showing that a Latin square is quasirandom if and only if the density of every 2x3 pattern is 1/720+o(1). This result is the best possible in the sense that 2x3 cannot be replaced with 2x2 or 1xN for any N.
We develop a limit theory of Latin squares, paralleling the recent limit theories of dense graphs and permutations. We introduce a notion of density, an appropriate version of the cut distance, and a space of limit objects - so-called Latinons. Key r esults of our theory are the compactness of the limit space and the equivalence of the topologies induced by the cut distance and the left-convergence. Last, using Keevashs recent results on combinatorial designs, we prove that each Latinon can be approximated by a finite Latin square.
135 - Darcy Best , Ian M. Wanless 2019
We introduce a notion of parity for transversals, and use it to show that in Latin squares of order $2 bmod 4$, the number of transversals is a multiple of 4. We also demonstrate a number of relationships (mostly congruences modulo 4) involving $E_1, dots, E_n$, where $E_i$ is the number of diagonals of a given Latin square that contain exactly $i$ different symbols. Let $A(imid j)$ denote the matrix obtained by deleting row $i$ and column $j$ from a parent matrix $A$. Define $t_{ij}$ to be the number of transversals in $L(imid j)$, for some fixed Latin square $L$. We show that $t_{ab}equiv t_{cd}bmod2$ for all $a,b,c,d$ and $L$. Also, if $L$ has odd order then the number of transversals of $L$ equals $t_{ab}$ mod 2. We conjecture that $t_{ac} + t_{bc} + t_{ad} + t_{bd} equiv 0 bmod 4$ for all $a,b,c,d$. In the course of our investigations we prove several results that could be of interest in other contexts. For example, we show that the number of perfect matchings in a $k$-regular bipartite graph on $2n$ vertices is divisible by $4$ when $n$ is odd and $kequiv0bmod 4$. We also show that $${rm per}, A(a mid c)+{rm per}, A(b mid c)+{rm per}, A(a mid d)+{rm per}, A(b mid d) equiv 0 bmod 4$$ for all $a,b,c,d$, when $A$ is an integer matrix of odd order with all row and columns sums equal to $kequiv2bmod4$.
In this note, we study large deviations of the number $mathbf{N}$ of intercalates ($2times2$ combinatorial subsquares which are themselves Latin squares) in a random $ntimes n$ Latin square. In particular, for constant $delta>0$ we prove that $Pr(mat hbf{N}le(1-delta)n^{2}/4)leexp(-Omega(n^{2}))$ and $Pr(mathbf{N}ge(1+delta)n^{2}/4)leexp(-Omega(n^{4/3}(log n)^{2/3}))$, both of which are sharp up to logarithmic factors in their exponents. As a consequence, we deduce that a typical order-$n$ Latin square has $(1+o(1))n^{2}/4$ intercalates, matching a lower bound due to Kwan and Sudakov and resolving an old conjecture of McKay and Wanless.
A Latin square has six conjugate Latin squares obtained by uniformly permuting its (row, column, symbol) triples. We say that a Latin square has conjugate symmetry if at least two of its six conjugates are equal. We enumerate Latin squares with conju gate symmetry and classify them according to several common notions of equivalence. We also do similar enumerations under additional hypotheses, such as assuming the Latin square is reduced, diagonal, idempotent or unipotent. Our data corrected an error in earlier literature and suggested several patterns that we then found proofs for, including (1) The number of isomorphism classes of semisymmetric idempotent Latin squares of order $n$ equals the number of isomorphism classes of semisymmetric unipotent Latin squares of order $n+1$, and (2) Suppose $A$ and $B$ are totally symmetric Latin squares of order $n otequiv0bmod3$. If $A$ and $B$ are paratopic then $A$ and $B$ are isomorphic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا