ﻻ يوجد ملخص باللغة العربية
A emph{frequency square} is a matrix in which each row and column is a permutation of the same multiset of symbols. We consider only {em binary} frequency squares of order $n$ with $n/2$ zeroes and $n/2$ ones in each row and column. Two such frequency squares are emph{orthogonal} if, when superimposed, each of the 4 possible ordered pairs of entries occurs equally often. In this context we say that a $k$-MOFS$(n)$ is a set of $k$ binary frequency squares of order $n$ in which each pair of squares is orthogonal. A $k$-MOFS$(n)$ must satisfy $kle(n-1)^2$, and any MOFS achieving this bound are said to be emph{complete}. For any $n$ for which there exists a Hadamard matrix of order $n$ we show that there exists at least $2^{n^2/4-O(nlog n)}$ isomorphism classes of complete MOFS$(n)$. For $2<nequiv2pmod4$ we show that there exists a $17$-MOFS$(n)$ but no complete MOFS$(n)$. A $k$-maxMOFS$(n)$ is a $k$-MOFS$(n)$ that is not contained in any $(k+1)$-MOFS$(n)$. By computer enumeration, we establish that there exists a $k$-maxMOFS$(6)$ if and only if $kin{1,17}$ or $5le kle 15$. We show that up to isomorphism there is a unique $1$-maxMOFS$(n)$ if $nequiv2pmod4$, whereas no $1$-maxMOFS$(n)$ exists for $nequiv0pmod4$. We also prove that there exists a $5$-maxMOFS$(n)$ for each order $nequiv 2pmod{4}$ where $ngeq 6$.
A frequency square is a square matrix in which each row and column is a permutation of the same multiset of symbols. A frequency square is of type $(n;lambda)$ if it contains $n/lambda$ symbols, each of which occurs $lambda$ times per row and $lambda
We give a simple construction of an orthogonal basis for the space of m by n matrices with row and column sums equal to zero. This vector space corresponds to the affine space naturally associated with the Birkhoff polytope, contingency tables and La
We study the connection between mutually unbiased bases and mutually orthogonal extraordinary supersquares, a wider class of squares which does not contain only the Latin squares. We show that there are four types of complete sets of mutually orthogo
We establish a connection between the problem of constructing maximal collections of mutually unbiased bases (MUBs) and an open problem in the theory of Lie algebras. More precisely, we show that a collection of m MUBs in K^n gives rise to a collecti
We prove a conjecture by Garbe et al. [arXiv:2010.07854] by showing that a Latin square is quasirandom if and only if the density of every 2x3 pattern is 1/720+o(1). This result is the best possible in the sense that 2x3 cannot be replaced with 2x2 or 1xN for any N.