ﻻ يوجد ملخص باللغة العربية
A new approach to the development of extraction systems capable of forming ion beams with previously inaccessible intensity is proposed. The use of inhomogeneous accelerating field allows to improve the ion beam formation efficiency significantly. The increase of electric field magnitude is achieved by changing the shape of the electrodes only, without increasing the accelerating voltage and decreasing the interelectrode distance. The comparison is made between a new extraction system and a flat traditional one, which is the most common. The use of a new electrode geometry allows to increase the lifetime of the electrodes in sources of intense beams operating in a continuous wave mode. For electron cyclotron resonance ion sources, results demonstrate the possibility to form high-quality ion beams with a current density of more than $1:A/cm^2$.
The formation of unmagnetized electrostatic shock-like structures with a high Mach number is examined with one- and two-dimensional particle-in-cell (PIC) simulations. The structures are generated through the collision of two identical plasma clouds,
Laser-driven collisonless electrostatic shock formation and the subsequent ion acceleration have been studied in near critical density plasmas. Particle-in-cell simulations show that both the speed of laser-driven collisionless electrostatic shock an
We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cos
Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes.
The electron beam-plasma system is ubiquitous in the space plasma environment. Here, using a Darwin particle-in-cell method, the excitation of electrostatic and whistler instabilities by a gyrating electron beam is studied in support of recent labora