ﻻ يوجد ملخص باللغة العربية
We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and electrostatic field scaling permits high beam current densities by decreasing the beam aperture size for a given peak electric field set by breakdown limitations. Using multiple parallel beams, each totaling to an area A, can result in higher total beam current compared to a single aperture beam of the same area. Smaller dimensions also allow for higher focusing electric field gradients and therefore higher average beam current density. Here we demonstrate that Deep Reactive Ion Etching (DRIE) micromachined pillar electrodes, electrically isolated by silicon-nitride thin films enable higher performance ESQA with waferscale scalability. The fabricated ESQA are able to hold up to1 kV in air. A 3*3 array of 12 keV argon ion beams are focused in a wafer accelerator unit cell to pave the way for multiple wafer accelerator.
Vertical electric fields need to remain orders of magnitude smaller than the horizontal electric field in storage ring electric dipole moment experiments. Otherwise, the coupling with the magnetic dipole moment dominates the spin precession, eventual
We demonstrate a two-dimensional 11-zone ion trap array, where individual laser-cooled atomic ions are stored, separated, shuttled, and swapped. The trap geometry consists of two linear rf ion trap sections that are joined at a 90 degree angle to for
We report on the development of a radio frequency (RF) linear accelerator (linac) for multiple-ion beams that is made from stacks of low cost wafers. The accelerator lattice is comprised of RF-acceleration gaps and electrostatic quadrupole focusing e
Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of differ
A new approach to the development of extraction systems capable of forming ion beams with previously inaccessible intensity is proposed. The use of inhomogeneous accelerating field allows to improve the ion beam formation efficiency significantly. Th