ﻻ يوجد ملخص باللغة العربية
We introduce the class of analytic functions $$mathcal{F}(psi):= left{fin mathcal{A}: left(frac{zf(z)}{f(z)}-1right) prec psi(z),; psi(0)=0 right},$$ where $psi$ is univalent and establish the growth theorem with some geometric conditions on $psi$ and obtain the Koebe domain with some related sharp inequalities. Note that functions in this class may not be univalent. As an application, we obtain the growth theorem for the complete range of $alpha$ and $beta$ for the functions in the classes $mathcal{BS}(alpha):= {fin mathcal{A} : ({zf(z)}/{f(z)})-1 prec {z}/{(1-alpha z^2)},; alphain [0,1) }$ and $mathcal{S}_{cs}(beta):= {fin mathcal{A} : ({zf(z)}/{f(z)})-1 prec {z}/({(1-z)(1+beta z)}),; betain [0,1) }$, respectively which improves the earlier known bounds. The sharp Bohr-radii for the classes $S(mathcal{BS}(alpha))$ and $mathcal{BS}(alpha)$ are also obtained. A few examples as well as certain newly defined classes on the basis of geometry are also discussed.
Let $phi$ be a normalized convex function defined on open unit disk $mathbb{D}$. For a unified class of normalized analytic functions which satisfy the second order differential subordination $f(z)+ alpha z f(z) prec phi(z)$ for all $zin mathbb{D}$,
The Bohr radius for a class $mathcal{G}$ consisting of analytic functions $f(z)=sum_{n=0}^{infty}a_nz^n$ in unit disc $mathbb{D}={zinmathbb{C}:|z|<1}$ is the largest $r^*$ such that every function $f$ in the class $mathcal{G}$ satisfies the inequalit
In this paper, we investigate zeros of difference polynomials of the form $f(z)^nH(z, f)-s(z)$, where $f(z)$ is a meromorphic function, $H(z, f)$ is a difference polynomial of $f(z)$ and $s(z)$ is a small function. We first obtain some inequalities f
In this paper, the $m-$order infinite dimensional Hilbert tensor (hypermatrix) is intrduced to define an $(m-1)$-homogeneous operator on the spaces of analytic functions, which is called Hilbert tensor operator. The boundedness of Hilbert tensor oper
We introduce the Schur class of functions, discrete analytic on the integer lattice in the complex plane. As a special case, we derive the explicit form of discrete analytic Blaschke factors and solve the related basic interpolation problem.