ﻻ يوجد ملخص باللغة العربية
The Bohr radius for a class $mathcal{G}$ consisting of analytic functions $f(z)=sum_{n=0}^{infty}a_nz^n$ in unit disc $mathbb{D}={zinmathbb{C}:|z|<1}$ is the largest $r^*$ such that every function $f$ in the class $mathcal{G}$ satisfies the inequality begin{equation*} dleft(sum_{n=0}^{infty}|a_nz^n|, |f(0)|right) = sum_{n=1}^{infty}|a_nz^n|leq d(f(0), partial f(mathbb{D})) end{equation*} for all $|z|=r leq r^*$, where $d$ is the Euclidean distance. In this paper, our aim is to determine the Bohr radius for the classes of analytic functions $f$ satisfying differential subordination relations $zf(z)/f(z) prec h(z)$ and $f(z)+beta z f(z)+gamma z^2 f(z)prec h(z)$, where $h$ is the Janowski function. Analogous results are obtained for the classes of $alpha$-convex functions and typically real functions, respectively. All obtained results are sharp.
This paper mainly uses the nonnegative continuous function ${zeta_n(r)}_{n=0}^{infty}$ to redefine the Bohr radius for the class of analytic functions satisfying $real f(z)<1$ in the unit disk $|z|<1$ and redefine the Bohr radius of the alternating s
Let $phi$ be a normalized convex function defined on open unit disk $mathbb{D}$. For a unified class of normalized analytic functions which satisfy the second order differential subordination $f(z)+ alpha z f(z) prec phi(z)$ for all $zin mathbb{D}$,
We introduce the class of analytic functions $$mathcal{F}(psi):= left{fin mathcal{A}: left(frac{zf(z)}{f(z)}-1right) prec psi(z),; psi(0)=0 right},$$ where $psi$ is univalent and establish the growth theorem with some geometric conditions on $psi$ an
We study expansion/contraction properties of some common classes of mappings of the Euclidean space ${mathbb R}^n, nge 2,,$ with respect to the distance ratio metric. The first main case is the behavior of Mobius transformations of the unit ball in $
For $frac12<p<infty$, $0<q<infty$ and a certain two-sided doubling weight $omega$, we characterize those inner functions $Theta$ for which $$|Theta|_{A^{p,q}_omega}^q=int_0^1 left(int_0^{2pi} |Theta(re^{itheta})|^p dthetaright)^{q/p} omega(r),dr<in