ترغب بنشر مسار تعليمي؟ اضغط هنا

Infinite dimensional Hilbert tensors on spaces of analytic functions

109   0   0.0 ( 0 )
 نشر من قبل Yisheng Song
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the $m-$order infinite dimensional Hilbert tensor (hypermatrix) is intrduced to define an $(m-1)$-homogeneous operator on the spaces of analytic functions, which is called Hilbert tensor operator. The boundedness of Hilbert tensor operator is presented on Bergman spaces $A^p$ ($p>2(m-1)$). On the base of the boundedness, two positively homogeneous operators are introduced to the spaces of analytic functions, and hence the upper bounds of norm of such two operators are found on Bergman spaces $A^p$ ($p>2(m-1)$). In particular, the norms of such two operators on Bergman spaces $A^{4(m-1)}$ are smaller than or equal to $pi$ and $pi^frac1{m-1}$, respectively.



قيم البحث

اقرأ أيضاً

70 - Wei Mei , Yisheng Song 2016
In this paper, we introduce the concept of an $m$-order $n$-dimensional generalized Hilbert tensor $mathcal{H}_{n}=(mathcal{H}_{i_{1}i_{2}cdots i_{m}})$, $$ mathcal{H}_{i_{1}i_{2}cdots i_{m}}=frac{1}{i_{1}+i_{2}+cdots i_{m}-m+a}, ain mathbb{R}setminu smathbb{Z}^-; i_{1},i_{2},cdots,i_{m}=1,2,cdots,n, $$ and show that its $H$-spectral radius and its $Z$-spectral radius are smaller than or equal to $M(a)n^{m-1}$ and $M(a)n^{frac{m}{2}}$, respectively, here $M(a)$ is a constant only dependent on $a$. Moreover, both infinite and finite dimensional generalized Hilbert tensors are positive definite for $ageq1$. For an $m$-order infinite dimensional generalized Hilbert tensor $mathcal{H}_{infty}$ with $a>0$, we prove that $mathcal{H}_{infty}$ defines a bounded and positively $(m-1)$-homogeneous operator from $l^{1}$ into $l^{p} (1<p<infty)$. The upper bounds of norm of corresponding positively homogeneous operators are obtained.
We reformulate entanglement wedge reconstruction in the language of operator-algebra quantum error correction with infinite-dimensional physical and code Hilbert spaces. Von Neumann algebras are used to characterize observables in a boundary subregio n and its entanglement wedge. Assuming that the infinite-dimensional von Neumann algebras associated with an entanglement wedge and its complement may both be reconstructed in their corresponding boundary subregions, we prove that the relative entropies measured with respect to the bulk and boundary observables are equal. We also prove the converse: when the relative entropies measured in an entanglement wedge and its complement equal the relative entropies measured in their respective boundary subregions, entanglement wedge reconstruction is possible. Along the way, we show that the bulk and boundary modular operators act on the code subspace in the same way. For holographic theories with a well-defined entanglement wedge, this result provides a well-defined notion of holographic relative entropy.
137 - Roderich Tumulka 2020
The thermal equilibrium distribution over quantum-mechanical wave functions is a so-called Gaussian adjusted projected (GAP) measure, $GAP(rho_beta)$, for a thermal density operator $rho_beta$ at inverse temperature $beta$. More generally, $GAP(rho)$ is a probability measure on the unit sphere in Hilbert space for any density operator $rho$ (i.e., a positive operator with trace 1). In this note, we collect the mathematical details concerning the rigorous definition of $GAP(rho)$ in infinite-dimensional separable Hilbert spaces. Its existence and uniqueness follows from Prohorovs theorem on the existence and uniqueness of Gaussian measures in Hilbert spaces with given mean and covariance. We also give an alternative existence proof. Finally, we give a proof that $GAP(rho)$ depends continuously on $rho$ in the sense that convergence of $rho$ in the trace norm implies weak convergence of $GAP(rho)$.
In this note, we study the boundedness of integral operators $I_{g}$ and $T_{g}$ on analytic Morrey spaces. Furthermore, the norm and essential norm of those operators are given.
We introduce the class of analytic functions $$mathcal{F}(psi):= left{fin mathcal{A}: left(frac{zf(z)}{f(z)}-1right) prec psi(z),; psi(0)=0 right},$$ where $psi$ is univalent and establish the growth theorem with some geometric conditions on $psi$ an d obtain the Koebe domain with some related sharp inequalities. Note that functions in this class may not be univalent. As an application, we obtain the growth theorem for the complete range of $alpha$ and $beta$ for the functions in the classes $mathcal{BS}(alpha):= {fin mathcal{A} : ({zf(z)}/{f(z)})-1 prec {z}/{(1-alpha z^2)},; alphain [0,1) }$ and $mathcal{S}_{cs}(beta):= {fin mathcal{A} : ({zf(z)}/{f(z)})-1 prec {z}/({(1-z)(1+beta z)}),; betain [0,1) }$, respectively which improves the earlier known bounds. The sharp Bohr-radii for the classes $S(mathcal{BS}(alpha))$ and $mathcal{BS}(alpha)$ are also obtained. A few examples as well as certain newly defined classes on the basis of geometry are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا