ﻻ يوجد ملخص باللغة العربية
Tail-biting convolutional codes extend the classical zero-termination convolutional codes: Both encoding schemes force the equality of start and end states, but under the tail-biting each state is a valid termination. This paper proposes a machine-learning approach to improve the state-of-the-art decoding of tail-biting codes, focusing on the widely employed short length regime as in the LTE standard. This standard also includes a CRC code. First, we parameterize the circular Viterbi algorithm, a baseline decoder that exploits the circular nature of the underlying trellis. An ensemble combines multiple such weighted decoders, each decoder specializes in decoding words from a specific region of the channel words distribution. A region corresponds to a subset of termination states; the ensemble covers the entire states space. A non-learnable gating satisfies two goals: it filters easily decoded words and mitigates the overhead of executing multiple weighted decoders. The CRC criterion is employed to choose only a subset of experts for decoding purpose. Our method achieves FER improvement of up to 0.75dB over the CVA in the waterfall region for multiple code lengths, adding negligible computational complexity compared to the circular Viterbi algorithm in high SNRs.
Cyclic redundancy check (CRC) codes combined with convolutional codes yield a powerful concatenated code that can be efficiently decoded using list decoding. To help design such systems, this paper presents an efficient algorithm for identifying the
Neural decoders were introduced as a generalization of the classic Belief Propagation (BP) decoding algorithms, where the Trellis graph in the BP algorithm is viewed as a neural network, and the weights in the Trellis graph are optimized by training
As a typical example of bandwidth-efficient techniques, bit-interleaved coded modulation with iterative decoding (BICM-ID) provides desirable spectral efficiencies in various wireless communication scenarios. In this paper, we carry out a comprehensi
Deep neural networks (DNNs) based digital receivers can potentially operate in complex environments. However, the dynamic nature of communication channels implies that in some scenarios, DNN-based receivers should be periodically retrained in order t
We introduce generalized spatially coupled parallel concatenated codes (GSC-PCCs), a class of spatially coupled turbo-like codes obtained by coupling parallel concatenated codes (PCCs) with a fraction of information bits repeated before the PCC encod