ﻻ يوجد ملخص باللغة العربية
Cyclic redundancy check (CRC) codes combined with convolutional codes yield a powerful concatenated code that can be efficiently decoded using list decoding. To help design such systems, this paper presents an efficient algorithm for identifying the distance-spectrum-optimal (DSO) CRC polynomial for a given tail-biting convolutional code (TBCC) when the target undetected error rate (UER) is small. Lou et al. found that the DSO CRC design for a given zero-terminated convolutional code under low UER is equivalent to maximizing the undetected minimum distance (the minimum distance of the concatenated code). This paper applies the same principle to design the DSO CRC for a given TBCC under low target UER. Our algorithm is based on partitioning the tail-biting trellis into several disjoint sets of tail-biting paths that are closed under cyclic shifts. This paper shows that the tail-biting path in each set can be constructed by concatenating the irreducible error events (IEEs) and circularly shifting the resultant path. This motivates an efficient collection algorithm that aims at gathering IEEs, and a search algorithm that reconstructs the full list of error events with bounded distance of interest, which can be used to find the DSO CRC. Simulation results show that DSO CRCs can significantly outperform suboptimal CRCs in the low UER regime.
Tail-biting convolutional codes extend the classical zero-termination convolutional codes: Both encoding schemes force the equality of start and end states, but under the tail-biting each state is a valid termination. This paper proposes a machine-le
As a typical example of bandwidth-efficient techniques, bit-interleaved coded modulation with iterative decoding (BICM-ID) provides desirable spectral efficiencies in various wireless communication scenarios. In this paper, we carry out a comprehensi
Modern image and video compression codes employ elaborate structures existing in such signals to encode them into few number of bits. Compressed sensing recovery algorithms on the other hand use such signals structures to recover them from few linear
In this paper we consider lossless source coding for a class of sources specified by the total variational distance ball centred at a fixed nominal probability distribution. The objective is to find a minimax average length source code, where the min
We consider the problem of sparse signal recovery from 1-bit measurements. Due to the noise present in the acquisition and transmission process, some quantized bits may be flipped to their opposite states. These sign flips may result in severe perfor