ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) based digital receivers can potentially operate in complex environments. However, the dynamic nature of communication channels implies that in some scenarios, DNN-based receivers should be periodically retrained in order to track temporal variations in the channel conditions. To this aim, frequent transmissions of lengthy pilot sequences are generally required, at the cost of substantial overhead. In this work we propose a DNN-aided symbol detector, Meta-ViterbiNet, that tracks channel variations with reduced overhead by integrating three complementary techniques: 1) We leverage domain knowledge to implement a model-based/data-driven equalizer, ViterbiNet, that operates with a relatively small number of trainable parameters; 2) We tailor a meta-learning procedure to the symbol detection problem, optimizing the hyperparameters of the learning algorithm to facilitate rapid online adaptation; and 3) We adopt a decision-directed approach based on coded communications to enable online training with short-length pilot blocks. Numerical results demonstrate that Meta-ViterbiNet operates accurately in rapidly-varying channels, outperforming the previous best approach, based on ViterbiNet or conventional recurrent neural networks without meta-learning, by a margin of up to 0.6dB in bit error rate in various challenging scenarios.
Wireless communications over fast fading channels are challenging, requiring either frequent channel tracking or complicated signaling schemes such as orthogonal time frequency space (OTFS) modulation. In this paper, we propose low-complexity frequen
Wireless applications that use high-reliability low-latency links depend critically on the capability of the system to predict link quality. This dependence is especially acute at the high carrier frequencies used by mmWave and THz systems, where the
Tail-biting convolutional codes extend the classical zero-termination convolutional codes: Both encoding schemes force the equality of start and end states, but under the tail-biting each state is a valid termination. This paper proposes a machine-le
In this paper, a novel spatially non-stationary channel model is proposed for link-level computer simulations of massive multiple-input multiple-output (mMIMO) with extremely large aperture array (ELAA). The proposed channel model allows a mix of non
Typically, loss functions, regularization mechanisms and other important aspects of training parametric models are chosen heuristically from a limited set of options. In this paper, we take the first step towards automating this process, with the vie