ﻻ يوجد ملخص باللغة العربية
We analyze Bergman spaces A p f (D) of generalized analytic functions of solutions to the Vekua equation $partial$w = ($partial$f /f)w in the unit disc of the complex plane, for Lipschitz-smooth non-vanishing real valued functions f and 1 < p < $infty$. We consider a family of bounded extremal problems (best constrained approximation) in the Bergman space A p (D) and in its generalized version A p f (D), that consists in approximating a function in subsets of D by the restriction of a function belonging to A p (D) or A p f (D) subject to a norm constraint. Preliminary constructive results are provided for p = 2.
In this paper, we study the behavior of the singular values of Hankel operators on weighted Bergman spaces $A^2_{omega _varphi}$, where $omega _varphi= e^{-varphi}$ and $varphi$ is a subharmonic function. We consider compact Hankel operators $H_{over
We discuss sampling constants for dominating sets in Bergman spaces. Our method is based on a Remez-type inequality by Andrievskii and Ruscheweyh. We also comment on extensions of the method to other spaces such as Fock and Paley-Wiener spaces.
For $-1<alpha<infty$, let $omega_alpha(z)=(1+alpha)(1-|z|^2)^alpha$ be the standard weight on the unit disk. In this note, we provide descriptions of the boundedness and compactness for the Toeplitz operators $T_{mu,beta}$ between distinct weighted B
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration o
For $mathbb B^n$ the unit ball of $mathbb C^n$, we consider Bergman-Orlicz spaces of holomorphic functions in $L^Phi_alpha$, which are generalizations of classical Bergman spaces. We characterize the dual space of large Bergman-Orlicz space, and boun