ترغب بنشر مسار تعليمي؟ اضغط هنا

On singular values of Hankel operators on Bergman spaces

101   0   0.0 ( 0 )
 نشر من قبل Omar El-Fallah
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the behavior of the singular values of Hankel operators on weighted Bergman spaces $A^2_{omega _varphi}$, where $omega _varphi= e^{-varphi}$ and $varphi$ is a subharmonic function. We consider compact Hankel operators $H_{overline {phi}}$, with anti-analytic symbols ${overline {phi}}$, and give estimates of the trace of $h(|H_{overline phi}|)$ for any convex function $h$. This allows us to give asymptotic estimates of the singular values $(s_n(H_{overline {phi}}))_n$ in terms of decreasing rearrangement of $|phi |/sqrt{Delta varphi}$. For the radial weights, we first prove that the critical decay of $(s_n(H_{overline {phi}}))_n$ is achieved by $(s_n (H_{overline{z}}))_n$. Namely, we establish that if $s_n(H_{overline {phi}})= o (s_n(H_{overline {z}}))$, then $H_{overline {phi}} = 0$. Then, we show that if $Delta varphi (z) asymp frac{1}{(1-|z|^2)^{2+beta}}$ with $beta geq 0$, then $s_n(H_{overline {phi}}) = O(s_n(H_{overline {z}}))$ if and only if $phi $ belongs to the Hardy space $H^p$, where $p= frac{2(1+beta)}{2+beta}$. Finally, we compute the asymptotics of $s_n(H_{overline {phi}})$ whenever $ phi in H^{p }$.



قيم البحث

اقرأ أيضاً

For $mathbb B^n$ the unit ball of $mathbb C^n$, we consider Bergman-Orlicz spaces of holomorphic functions in $L^Phi_alpha$, which are generalizations of classical Bergman spaces. We characterize the dual space of large Bergman-Orlicz space, and boun ded Hankel operators between some Bergman-Orlicz spaces $A_alpha^{Phi_1}(mathbb B^n)$ and $A_alpha^{Phi_2}(mathbb B^n)$ where $Phi_1$ and $Phi_2$ are either convex or concave growth functions.
197 - Jordi Pau 2015
We completely characterize the simultaneous membership in the Schatten ideals $S_ p$, $0<p<infty$ of the Hankel operators $H_ f$ and $H_{bar{f}}$ on the Bergman space, in terms of the behaviour of a local mean oscillation function, proving a conjecture of Kehe Zhu from 1991.
We prove Carleson embeddings for Bergman spaces of tube domains over symmetric cones, we apply them to characterize symbols of bounded Ces`aro-type operators from weighted Bergman spaces to weighted Besov spaces. We also obtain Schatten class criteri a of Toeplitz operators and Ces`aro-type operators on weighted Hilbert-Bergman spaces.
In this note, we frst consider boundedness properties of a family of operators generalizing the Hilbert operator in the upper triangle case. In the diagonal case, we give the exact norm of these operators under some restrictions on the parameters. We secondly consider boundedness properties of a family of positive Bergman-type operators of the upper-half plane. We give necessary and sufficient conditions on the parameters under which these operators are bounded in the upper triangle case.
A full description of the membership in the Schatten ideal $S_ p(A^2_{omega})$ for $0<p<infty$ of the Toeplitz operator acting on large weighted Bergman spaces is obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا