ترغب بنشر مسار تعليمي؟ اضغط هنا

Volterra type integration operators between weighted Bergman spaces and Hardy spaces

87   0   0.0 ( 0 )
 نشر من قبل Zipeng Wang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration operators [ J_{g}(f)(z)=int_{0}^{z}f(lambda)g(lambda)dlambda ] between weighted Bergman spaces $L_{a}^{p}(omega )$ induced by $mathcal{D}$ weights and Hardy spaces $H^{q}$ for $0<p,q<infty$.



قيم البحث

اقرأ أيضاً

We completely characterize the boundedness of the Volterra type integration operators $J_b$ acting from the weighted Bergman spaces $A^p_alpha$ to the Hardy spaces $H^q$ of the unit ball of $mathbb{C}^n$ for all $0<p,q<infty$. A partial solution to t he case $n=1$ was previously obtained by Z. Wu in cite{Wu}. We solve the cases left open there and extend all the results to the setting of arbitrary complex dimension $n$. Our tools involve area methods from harmonic analysis, Carleson measures and Kahane-Khinchine type inequalities, factorization tricks for tent spaces of sequences, as well as techniques and integral estimates related to Hardy and Bergman spaces.
78 - Siyu Wang , Zipeng Wang 2020
For $-1<alpha<infty$, let $omega_alpha(z)=(1+alpha)(1-|z|^2)^alpha$ be the standard weight on the unit disk. In this note, we provide descriptions of the boundedness and compactness for the Toeplitz operators $T_{mu,beta}$ between distinct weighted B ergman spaces $L_{a}^{p}(omega_{alpha})$ and $L_{a}^{q}(omega_{beta})$ when $0<pleq1$, $q=1$, $-1<alpha,beta<infty$ and $0<pleq 1<q<infty, -1<betaleqalpha<infty$, respectively. Our results can be viewed as extensions of Pau and Zhaos work in cite{Pau}. Moreover, partial of main results are new even in the unweighted settings.
197 - Jordi Pau 2015
We completely characterize the simultaneous membership in the Schatten ideals $S_ p$, $0<p<infty$ of the Hankel operators $H_ f$ and $H_{bar{f}}$ on the Bergman space, in terms of the behaviour of a local mean oscillation function, proving a conjecture of Kehe Zhu from 1991.
A full description of the membership in the Schatten ideal $S_ p(A^2_{omega})$ for $0<p<infty$ of the Toeplitz operator acting on large weighted Bergman spaces is obtained.
328 - Jordi Pau , Ruhan Zhao , 2015
We introduce a family of weighted BMO and VMO spaces for the unit ball and use them to characterize bounded and compact Hankel operators between different Bergman spaces. In particular, we resolve two problems left open by S. Janson in 1988 and R. Wallsten in 1990.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا