ترغب بنشر مسار تعليمي؟ اضغط هنا

A Neural Network-Based Linguistic Similarity Measure for Entrainment in Conversations

445   0   0.0 ( 0 )
 نشر من قبل Mingzhi Yu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Linguistic entrainment is a phenomenon where people tend to mimic each other in conversation. The core instrument to quantify entrainment is a linguistic similarity measure between conversational partners. Most of the current similarity measures are based on bag-of-words approaches that rely on linguistic markers, ignoring the overall language structure and dialogue context. To address this issue, we propose to use a neural network model to perform the similarity measure for entrainment. Our model is context-aware, and it further leverages a novel component to learn the shared high-level linguistic features across dialogues. We first investigate the effectiveness of our novel component. Then we use the model to perform similarity measure in a corpus-based entrainment analysis. We observe promising results for both evaluation tasks.



قيم البحث

اقرأ أيضاً

Style is an integral part of natural language. However, evaluation methods for style measures are rare, often task-specific and usually do not control for content. We propose the modular, fine-grained and content-controlled similarity-based STyle Eva Luation framework (STEL) to test the performance of any model that can compare two sentences on style. We illustrate STEL with two general dimensions of style (formal/informal and simple/complex) as well as two specific characteristics of style (contraction and numb3r substitution). We find that BERT-based methods outperform simp
We present a novel approach to learn representations for sentence-level semantic similarity using conversational data. Our method trains an unsupervised model to predict conversational input-response pairs. The resulting sentence embeddings perform w ell on the semantic textual similarity (STS) benchmark and SemEval 2017s Community Question Answering (CQA) question similarity subtask. Performance is further improved by introducing multitask training combining the conversational input-response prediction task and a natural language inference task. Extensive experiments show the proposed model achieves the best performance among all neural models on the STS benchmark and is competitive with the state-of-the-art feature engineered and mixed systems in both tasks.
Tables are a popular and efficient means of presenting structured information. They are used extensively in various kinds of documents including web pages. Tables display information as a two-dimensional matrix, the semantics of which is conveyed by a mixture of structure (rows, columns), headers, caption, and content. Recent research has started to consider tables as first class objects, not just as an addendum to texts, yielding interesting results for problems like table matching, table completion, or value imputation. All of these problems inherently rely on an accurate measure for the semantic similarity of two tables. We present TabSim, a novel method to compute table similarity scores using deep neural networks. Conceptually, TabSim represents a table as a learned concatenation of embeddings of its caption, its content, and its structure. Given two tables in this representation, a Siamese neural network is trained to compute a score correlating with the tables semantic similarity. To train and evaluate our method, we created a gold standard corpus consisting of 1500 table pairs extracted from biomedical articles and manually scored regarding their degree of similarity, and adopted two other corpora originally developed for a different yet similar task. Our evaluation shows that TabSim outperforms other table similarity measures on average by app. 7% pp F1-score in a binary similarity classification setting and by app. 1.5% pp in a ranking scenario.
Whereas traditional cryptography encrypts a secret message into an unintelligible form, steganography conceals that communication is taking place by encoding a secret message into a cover signal. Language is a particularly pragmatic cover signal due to its benign occurrence and independence from any one medium. Traditionally, linguistic steganography systems encode secret messages in existing text via synonym substitution or word order rearrangements. Advances in neural language models enable previously impractical generation-based techniques. We propose a steganography technique based on arithmetic coding with large-scale neural language models. We find that our approach can generate realistic looking cover sentences as evaluated by humans, while at the same time preserving security by matching the cover message distribution with the language model distribution.
Recurrent Neural Network Language Models (RNNLMs) have started to be used in various fields of speech recognition due to their outstanding performance. However, the high computational complexity of RNNLMs has been a hurdle in applying the RNNLM to a real-time Large Vocabulary Continuous Speech Recognition (LVCSR). In order to accelerate the speed of RNNLM-based network searches during decoding, we apply the General Purpose Graphic Processing Units (GPGPUs). This paper proposes a novel method of applying GPGPUs to RNNLM-based graph traversals. We have achieved our goal by reducing redundant computations on CPUs and amount of transfer between GPGPUs and CPUs. The proposed approach was evaluated on both WSJ corpus and in-house data. Experiments shows that the proposed approach achieves the real-time speed in various circumstances while maintaining the Word Error Rate (WER) to be relatively 10% lower than that of n-gram models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا