ﻻ يوجد ملخص باللغة العربية
We study the possibility of realising tree level leptogenesis from three body decay, dark matter and neutrino mass in a minimal framework. We propose a first of its kind model to implement the idea of leptogenesis from three body decay where CP asymmetry arises from interference of multiple tree level diagrams. The standard model is extended by three heavy singlet fermions, one scalar singlet and one scalar doublet with appropriate discrete charges. Two of these singlet fermions not only play non-trivial roles in generating light neutrino mass at radiative level in scotogenic fashion, but also act as mediators in three body decay of the third singlet fermion leading to desired CP asymmetry through interference of tree level diagrams. With just one additional field compared to the minimal scotogenic model, we show that successful leptogenesis can occur at a scale as low as 1 TeV which is lower than the leptogenesis scale found for scotogenic model. Also, the realisation of this tree level three body decay leptogenesis naturally leads to a two component scalar singlet-doublet dark matter scenario offering a rich phenomenology. Apart from having interesting interplay of different couplings involved in processes related to both leptogenesis and dark matter, the model can also be tested at different experiments due to the existence of its particle spectrum at TeV scale.
A typical problem of the leptogenesis scenario is the mismatch between the maximum reheat temperature implied by gravitino overproduction bound and the minimum temperature required to create thermally the lightest right-handed neutrino. We explore th
We present a simple extension of the standard model (SM) to explain the diphoton excess, reported by CMS and ATLAS at CERN LHC. The SM is extended by a dark sector including a vector-like lepton doublet and a singlet of zero electromagnetic charge, w
The dynamical generation of right-handed-neutrino (RHN) masses in the early Universe naturally entails the formation of cosmic strings that give rise to an observable signal in gravitational waves (GWs). Here, we show that a characteristic break in t
We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino o
No-scale supergravity provides a successful framework for Starobinsky-like inflation models. Two classes of models can be distinguished depending on the identification of the inflaton with the volume modulus, $T$ (C-models), or a matter-like field, $