ﻻ يوجد ملخص باللغة العربية
We present a simple extension of the standard model (SM) to explain the diphoton excess, reported by CMS and ATLAS at CERN LHC. The SM is extended by a dark sector including a vector-like lepton doublet and a singlet of zero electromagnetic charge, which are odd under a $Z_2$ symmetry. These vector-like leptons assist the additional scalar, different from SM Higgs, to decay to di-photons of invariant mass around 750 GeV and thus explaining the excess observed at LHC. The admixture of neutral component of the vector-like lepton doublet and singlet constitute the dark matter component of the Universe. We show the relevant parameter space for correct relic density and direct detection of dark matter.
We study the possibility of explaining the recently reported 750 GeV di-photon excess at LHC within the framework of a left-right symmetric model. The 750 GeV neutral scalar in the model is dominantly an admixture of neutral components of scalar bido
We explore several perturbative scenarios in which the di-photon excess at 750 GeV can potentially be explained: a scalar singlet, a two Higgs doublet model (2HDM), a 2HDM with an extra singlet, and the decays of heavier resonances, both vector and s
For successful electroweak baryogenesis to take place through the sphaleron process the universe needs to undergo a strong first order cosmological phase transition. While it does not occur in the Standard Model it becomes possible in the presence of
Motivated by the recent LHC discovery of the di-photon excess at the invariant mass of ~ 750 GeV, we study the prospect of investigating the scalar resonance at a future photon-photon collider. We show that, if the di-photon excess observed at the LH
The observed excess in the diphoton mass spectrum around 750 GeV at the 13 TeV LHC possibly indicates the presence of a photonphilic resonance. We show that the excess can be explained by a scalar of the type involved in Bekensteins framework for var