ترغب بنشر مسار تعليمي؟ اضغط هنا

Fingerprint of Low-Scale Leptogenesis in the Primordial Gravitational-Wave Spectrum

97   0   0.0 ( 0 )
 نشر من قبل Kai Schmitz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamical generation of right-handed-neutrino (RHN) masses in the early Universe naturally entails the formation of cosmic strings that give rise to an observable signal in gravitational waves (GWs). Here, we show that a characteristic break in the GW spectrum would provide evidence for a new stage in the cosmological expansion history and a suppression of the RHN mass scale compared to the scale of spontaneous symmetry breaking. The detection of such a spectral feature would thus represent a novel and unique possibility to probe the physics of RHN mass generation in regions of parameter space that allow for low-scale leptogenesis in accord with electroweak naturalness.



قيم البحث

اقرأ أيضاً

Upcoming searches for the stochastic background of inflationary gravitational waves (GWs) offer the exciting possibility to probe the evolution of our Universe prior to Big Bang nucleosynthesis. In this spirit, we explore the sensitivity of future GW observations to a broad class of beyond-the-Standard-Model scenarios that lead to a nonstandard expansion history. We consider a new scalar field whose coherent oscillations dominate the energy density of the Universe at very early times, resulting in a scalar era prior to the standard radiation-dominated era. The imprint of this scalar era on the primordial GW spectrum provides a means to probe well-motivated yet elusive models of particle physics. Our work highlights the complementarity of future GW observatories across the entire range of accessible frequencies.
We study the effects of the Higgs directly coupled to the inflaton on the primordial power spectrum. The quadratic coupling between the Higgs and the inflaton stabilizes the Higgs in the electroweak vacuum during inflation by inducing a large effecti ve mass for the Higgs, which also leads to oscillatory features in the primordial power spectrum due to the oscillating classical background. Meanwhile, the features from quantum fluctuations exhibit simple monotonic k-dependence and are subleading compared to the classical contributions. We also comment on the collider searches.
In this paper, we revisit the estimation of the spectrum of primordial gravitational waves originated from inflation, particularly focusing on the effect of thermodynamics in the Standard Model of particle physics. By collecting recent results of per turbative and non-perturbative analysis of thermodynamic quantities in the Standard Model, we obtain the effective degrees of freedom including the corrections due to non-trivial interaction properties of particles in the Standard Model for a wide temperature interval. The impact of such corrections on the spectrum of primordial gravitational waves as well as the damping effect due to free-streaming particles is investigated by numerically solving the evolution equation of tensor perturbations in the expanding universe. It is shown that the reevaluation of the effects of free-streaming photons and neutrinos gives rise to some additional damping features overlooked in previous studies. We also observe that the continuous nature of the QCD crossover results in a smooth spectrum for modes that reenter the horizon at around the epoch of the QCD phase transition. Furthermore, we explicitly show that the values of the effective degrees of freedom remain smaller than the commonly used value 106.75 even at temperature much higher than the critical temperature of the electroweak crossover, and that the amplitude of primordial gravitational waves at a frequency range relevant to direct detection experiments becomes $mathcal{O}(1),%$ larger than previous estimates that do not include such corrections. This effect can be relevant to future high-sensitivity gravitational wave experiments such as ultimate DECIGO. Our results on the temperature evolution of the effective degrees of freedom are made available as tabulated data and fitting functions, which can also be used in the analysis of other cosmological relics.
156 - G. Lambiase , S. Mohanty , 2013
In this work we review the theories of origin of matter-antimatter asymmetry in the Universe. The general conditions for achieving baryogenesis and leptogenesis in a CPT conserving field theory have been laid down by Sakharov. In this review we discu ss scenarios where a background scalar or gravitational field spontaneously breaks the CPT symmetry and splits the energy levels between particles and anti-particles. Baryon or Lepton number violating processes in proceeding at thermal equilibrium in such backgrounds gives rise to Baryon or Lepton number asymmetry.
In this paper we analyze the spectrum of the primordial gravitational waves (GWs) predicted in the Standard Model*Axion*Seesaw*Higgs portal inflation (SMASH) model, which was proposed as a minimal extension of the Standard Model that addresses five f undamental problems of particle physics and cosmology (inflation, baryon asymmetry, neutrino masses, strong CP problem, and dark matter) in one stroke. The SMASH model has a unique prediction for the critical temperature of the second order Peccei-Quinn (PQ) phase transition $T_c sim 10^8,mathrm{GeV}$ up to the uncertainty in the calculation of the axion dark matter abundance, implying that there is a drastic change in the equation of state of the universe at that temperature. Such an event is imprinted on the spectrum of GWs originating from the primordial tensor fluctuations during inflation and entering the horizon at $T sim T_c$, which corresponds to $f sim 1,mathrm{Hz}$, pointing to a best frequency range covered by future space-borne GW interferometers. We give a precise estimation of the effective relativistic degrees of freedom across the PQ phase transition and use it to evaluate the spectrum of GWs observed today. It is shown that the future high sensitivity GW experiment -- ultimate DECIGO -- can probe the nontrivial feature resulting from the PQ phase transition in this model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا