ﻻ يوجد ملخص باللغة العربية
Autonomous vehicles (AVs) can achieve the desired results within a short duration by offloading tasks even requiring high computational power (e.g., object detection (OD)) to edge clouds. However, although edge clouds are exploited, real-time OD cannot always be guaranteed due to dynamic channel quality. To mitigate this problem, we propose an edge network-assisted real-time OD framework~(EODF). In an EODF, AVs extract the region of interests~(RoIs) of the captured image when the channel quality is not sufficiently good for supporting real-time OD. Then, AVs compress the image data on the basis of the RoIs and transmit the compressed one to the edge cloud. In so doing, real-time OD can be achieved owing to the reduced transmission latency. To verify the feasibility of our framework, we evaluate the probability that the results of OD are not received within the inter-frame duration (i.e., outage probability) and their accuracy. From the evaluation, we demonstrate that the proposed EODF provides the results to AVs in real-time and achieves satisfactory accuracy.
In this work, we propose an efficient and accurate monocular 3D detection framework in single shot. Most successful 3D detectors take the projection constraint from the 3D bounding box to the 2D box as an important component. Four edges of a 2D box p
Lidar has become an essential sensor for autonomous driving as it provides reliable depth estimation. Lidar is also the primary sensor used in building 3D maps which can be used even in the case of low-cost systems which do not use Lidar. Computation
Considerable progress has been made in semantic scene understanding of road scenes with monocular cameras. It is, however, mainly related to certain classes such as cars and pedestrians. This work investigates traffic cones, an object class crucial f
The edge computing paradigm places compute-capable devices - edge servers - at the network edge to assist mobile devices in executing data analysis tasks. Intuitively, offloading compute-intense tasks to edge servers can reduce their execution time.
We present a simple and flexible object detection framework optimized for autonomous driving. Building on the observation that point clouds in this application are extremely sparse, we propose a practical pillar-based approach to fix the imbalance is