ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-time Dynamic Object Detection for Autonomous Driving using Prior 3D-Maps

113   0   0.0 ( 0 )
 نشر من قبل Luis Guillermo Rold\\~ao Jimenez
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Lidar has become an essential sensor for autonomous driving as it provides reliable depth estimation. Lidar is also the primary sensor used in building 3D maps which can be used even in the case of low-cost systems which do not use Lidar. Computation on Lidar point clouds is intensive as it requires processing of millions of points per second. Additionally there are many subsequent tasks such as clustering, detection, tracking and classification which makes real-time execution challenging. In this paper, we discuss real-time dynamic object detection algorithms which leverages previously mapped Lidar point clouds to reduce processing. The prior 3D maps provide a static background model and we formulate dynamic object detection as a background subtraction problem. Computation and modeling challenges in the mapping and online execution pipeline are described. We propose a rejection cascade architecture to subtract road regions and other 3D regions separately. We implemented an initial version of our proposed algorithm and evaluated the accuracy on CARLA simulator.



قيم البحث

اقرأ أيضاً

In this work, we propose an efficient and accurate monocular 3D detection framework in single shot. Most successful 3D detectors take the projection constraint from the 3D bounding box to the 2D box as an important component. Four edges of a 2D box p rovide only four constraints and the performance deteriorates dramatically with the small error of the 2D detector. Different from these approaches, our method predicts the nine perspective keypoints of a 3D bounding box in image space, and then utilize the geometric relationship of 3D and 2D perspectives to recover the dimension, location, and orientation in 3D space. In this method, the properties of the object can be predicted stably even when the estimation of keypoints is very noisy, which enables us to obtain fast detection speed with a small architecture. Training our method only uses the 3D properties of the object without the need for external networks or supervision data. Our method is the first real-time system for monocular image 3D detection while achieves state-of-the-art performance on the KITTI benchmark. Code will be released at https://github.com/Banconxuan/RTM3D.
Considerable progress has been made in semantic scene understanding of road scenes with monocular cameras. It is, however, mainly related to certain classes such as cars and pedestrians. This work investigates traffic cones, an object class crucial f or traffic control in the context of autonomous vehicles. 3D object detection using images from a monocular camera is intrinsically an ill-posed problem. In this work, we leverage the unique structure of traffic cones and propose a pipelined approach to the problem. Specifically, we first detect cones in images by a tailored 2D object detector; then, the spatial arrangement of keypoints on a traffic cone are detected by our deep structural regression network, where the fact that the cross-ratio is projection invariant is leveraged for network regularization; finally, the 3D position of cones is recovered by the classical Perspective n-Point algorithm. Extensive experiments show that our approach can accurately detect traffic cones and estimate their position in the 3D world in real time. The proposed method is also deployed on a real-time, critical system. It runs efficiently on the low-power Jetson TX2, providing accurate 3D position estimates, allowing a race-car to map and drive autonomously on an unseen track indicated by traffic cones. With the help of robust and accurate perception, our race-car won both Formula Student Competitions held in Italy and Germany in 2018, cruising at a top-speed of 54 kmph. Visualization of the complete pipeline, mapping and navigation can be found on our project page.
401 - Rui Qian , Xin Lai , Xirong Li 2021
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion pred iction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR birds eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.
3D object detection based on LiDAR point clouds is a crucial module in autonomous driving particularly for long range sensing. Most of the research is focused on achieving higher accuracy and these models are not optimized for deployment on embedded systems from the perspective of latency and power efficiency. For high speed driving scenarios, latency is a crucial parameter as it provides more time to react to dangerous situations. Typically a voxel or point-cloud based 3D convolution approach is utilized for this module. Firstly, they are inefficient on embedded platforms as they are not suitable for efficient parallelization. Secondly, they have a variable runtime due to level of sparsity of the scene which is against the determinism needed in a safety system. In this work, we aim to develop a very low latency algorithm with fixed runtime. We propose a novel semantic segmentation architecture as a single unified model for object center detection using key points, box predictions and orientation prediction using binned classification in a simpler Birds Eye View (BEV) 2D representation. The proposed architecture can be trivially extended to include semantic segmentation classes like road without any additional computation. The proposed model has a latency of 4 ms on the embedded Nvidia Xavier platform. The model is 5X faster than other top accuracy models with a minimal accuracy degradation of 2% in Average Precision at IoU=0.5 on KITTI dataset.
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a critical and challenging task for low-cost urban autonomous driving and mobile robots. Most of the existing algorithms are based on the geometric c onstraints in 2D-3D correspondence, which stems from generic 6D object pose estimation. We first identify how the ground plane provides additional clues in depth reasoning in 3D detection in driving scenes. Based on this observation, we then improve the processing of 3D anchors and introduce a novel neural network module to fully utilize such application-specific priors in the framework of deep learning. Finally, we introduce an efficient neural network embedded with the proposed module for 3D object detection. We further verify the power of the proposed module with a neural network designed for monocular depth prediction. The two proposed networks achieve state-of-the-art performances on the KITTI 3D object detection and depth prediction benchmarks, respectively. The code will be published in https://www.github.com/Owen-Liuyuxuan/visualDet3D
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا