ترغب بنشر مسار تعليمي؟ اضغط هنا

Pillar-based Object Detection for Autonomous Driving

228   0   0.0 ( 0 )
 نشر من قبل Yue Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple and flexible object detection framework optimized for autonomous driving. Building on the observation that point clouds in this application are extremely sparse, we propose a practical pillar-based approach to fix the imbalance issue caused by anchors. In particular, our algorithm incorporates a cylindrical projection into multi-view feature learning, predicts bounding box parameters per pillar rather than per point or per anchor, and includes an aligned pillar-to-point projection module to improve the final prediction. Our anchor-free approach avoids hyperparameter search associated with past methods, simplifying 3D object detection while significantly improving upon state-of-the-art.



قيم البحث

اقرأ أيضاً

Human drivers produce a vast amount of data which could, in principle, be used to improve autonomous driving systems. Unfortunately, seemingly straightforward approaches for creating end-to-end driving models that map sensor data directly into drivin g actions are problematic in terms of interpretability, and typically have significant difficulty dealing with spurious correlations. Alternatively, we propose to use this kind of action-based driving data for learning representations. Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery and outperform pure end-to-end driving models, while being more interpretable. Further, we demonstrate how this strategy outperforms previous methods based on learning inverse dynamics models as well as other methods based on heavy human supervision (ImageNet).
128 - Arindam Das 2019
In the field of autonomous driving, camera sensors are extremely prone to soiling because they are located outside of the car and interact with environmental sources of soiling such as rain drops, snow, dust, sand, mud and so on. This can lead to eit her partial or complete vision degradation. Hence detecting such decay in vision is very important for safety and overall to preserve the functionality of the autonomous components in autonomous driving. The contribution of this work involves: 1) Designing a Deep Convolutional Neural Network (DCNN) based baseline network, 2) Exploiting several network remodelling techniques such as employing static and dynamic group convolution, channel reordering to compress the baseline architecture and make it suitable for low power embedded systems with nearly 1 TOPS, 3) Comparing various result metrics of all interim networks dedicated for soiling degradation detection at tile level of size 64 x 64 on input resolution 1280 x 768. The compressed network, is called SoildNet (Sand, snOw, raIn/dIrt, oiL, Dust/muD) that uses only 9.72% trainable parameters of the base network and reduces the model size by more than 7 times with no loss in accuracy
Autonomous driving can benefit from motion behavior comprehension when interacting with diverse traffic participants in highly dynamic environments. Recently, there has been a growing interest in estimating class-agnostic motion directly from point c louds. Current motion estimation methods usually require vast amount of annotated training data from self-driving scenes. However, manually labeling point clouds is notoriously difficult, error-prone and time-consuming. In this paper, we seek to answer the research question of whether the abundant unlabeled data collections can be utilized for accurate and efficient motion learning. To this end, we propose a learning framework that leverages free supervisory signals from point clouds and paired camera images to estimate motion purely via self-supervision. Our model involves a point cloud based structural consistency augmented with probabilistic motion masking as well as a cross-sensor motion regularization to realize the desired self-supervision. Experiments reveal that our approach performs competitively to supervised methods, and achieves the state-of-the-art result when combining our self-supervised model with supervised fine-tuning.
401 - Rui Qian , Xin Lai , Xirong Li 2021
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion pred iction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR birds eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a critical and challenging task for low-cost urban autonomous driving and mobile robots. Most of the existing algorithms are based on the geometric c onstraints in 2D-3D correspondence, which stems from generic 6D object pose estimation. We first identify how the ground plane provides additional clues in depth reasoning in 3D detection in driving scenes. Based on this observation, we then improve the processing of 3D anchors and introduce a novel neural network module to fully utilize such application-specific priors in the framework of deep learning. Finally, we introduce an efficient neural network embedded with the proposed module for 3D object detection. We further verify the power of the proposed module with a neural network designed for monocular depth prediction. The two proposed networks achieve state-of-the-art performances on the KITTI 3D object detection and depth prediction benchmarks, respectively. The code will be published in https://www.github.com/Owen-Liuyuxuan/visualDet3D

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا