ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-temperature dynamics and the role of disorder in nearly critical Ni(Cl$_{1-x}$Br$_x$)$_2$$cdot$4SC(NH$_2$)$_2$

222   0   0.0 ( 0 )
 نشر من قبل Leonardo Facheris
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic neutron scattering is used to investigate the temperature dependence of spin correlations in the 3-dimensional XY antiferromagnet Ni(Cl$_{1-x}$Br$_x$)$_2$$cdot$4SC(NH$_2$)$_2$, $ x = 0.14(1)$, tuned close to the chemical-composition-induced soft-mode transition. The local dynamic structure factor shows $hbaromega/T$ scaling behavior characteristic of a quantum critical point. The deviation of the measured critical exponent from spin wave theoretical expectations are attributed to disorder. Another effect of disorder is local excitations above the magnon band. Their energy, structure factor and temperature dependence are well explained by simple strong-bond dimers associated with Br-impurity sites.



قيم البحث

اقرأ أيضاً

The field-induced ordering transition in the quantum spin system NiCl$_2$$cdot$4SC(NH$_2$)$_2$ is studied by means of neutron diffraction, AC magnetometry and relaxation calorimetry. The interpretation of the data is strongly influenced by a finite d istribution of transition fields in the samples, which was present but disregarded in previous studies. Taking this effect into account, we find that the order-parameter critical exponent is inconsistent with the BEC universality class even at temperatures below 100 mK. All results are discussed in comparison with previous measurements and with recent similar studies of disordered Ni(Cl$_{1-x}$Br$_x$)$_2$$cdot$4SC(NH$_2$)$_2$.
Raman spectroscopy is used to study magnetic excitations in the quasi one dimensional $S=1/2$ quantum spin systems Cu(Qnx)(Cl$_{1-x}$Br$_x$)$_2$. The low energy spectrum is found to be dominated by a two-magnon continuum as expected from the numerica l calculations for the Heisenberg spin ladder model. The continuum shifts to higher energies as more Br is introduced. The cutoff of the scattering increases faster than the onset indicating that the increase of exchange constant along the leg is the main effect on the magnetic properties. The upper and lower continuum thresholds are measured as a function of Br content across the entire range and compared to estimates based on previous bulk studies. We observe small systematic deviations that are discussed.
Recently, we employed electronic polarization-resolved Raman spectroscopy to reveal the strongly correlated excitonic insulator (EI) nature of Ta2NiSe5, Volkov et al. [arXiv:2007.07344], and also showed that for Ta$_2$Ni(Se$_{1-x}$S$_x$)$_5$ alloys t he critical excitonic fluctuations diminish with sulfur concentration x exposing a cooperating lattice instability that takes over for large x, Volkov et al. [arXiv:2104.07032]. Here we focus on the lattice dynamics of this EI family. We identify all Raman-active optical phonons of fully symmetric and ac-quadrupole-like symmetries and study their evolution with temperature and sulfur concentration. We demonstrate the change of selection rules at temperatures below the orthorhombic-to-monoclinic transition at Tc(x) that is related to the EI phase. We find that Tc(x) decrease monotonically from 328 K for Ta2NiSe5 to 120 K for Ta2NiS5 and that the magnitude of lattice distortion also decreases with the sulfur concentration x. For x < 0.7, the two lowest-frequency B2g phonon modes show strongly asymmetric lineshapes at high temperatures due to Fano interference with the broad excitonic continuum present in a semimetallic state. Within the framework of extended Fano model, we develop a quantitative description of the interacting exciton-phonon excitation lineshape, enabling us to derive the intrinsic phonon parameters and determine the exciton-phonon interaction strength, that affects the transition temperature Tc(x). We also observe signatures of the acoustic mode scattered assisted by the structural domain walls formed below Tc. Based on our results, we additionally present a consistent interpretation of the origin of oscillations observed in time-resolved pump-probe experiments.
Structural, magnetization and heat capacity studies were performed on Ce$_2$(Pd$_{1-x}$Ni$_x$)$_2$Sn ($0 leq x leq 1$) alloys. The substitution of Pd atoms by isoelectronic Ni leads to a change in the crystallographic structure from tetragonal (for $ x leq 0.3$) to centered orthorhombic lattice (for $x geq 0.4$). The volume contraction thorough the series is comparable to the expected from the atomic size ratio between transition metal components. The consequent weak increase of the Kondo temperature drives the two transitions observed in Ce$_2$Pd$_2$Sn to merge at $x = 0.25$. After about a 1% of volume collapse at the structural modification, the system behaves as a weakly magnetic heavy fermion with an enhanced degenerate ground state. Notably, an incipient magnetic transition arises on the Ni-rich size. This unexpected behavior is discussed in terms of an enhancement of the density of states driven by the increase of the $4f$-conduction band hybridization and the incipient contribution of the first excited crystal field doublet on the ground state properties.
We report on the results of angle-resolved photoemission experiments on a quasi-one-dimensional $MX$-chain compound [Ni(chxn)$_2$Br]Br$_2$ (chxn = 1$R$,2$R$-cyclohexanediamine), a one-dimensional Heisenberg system with $S=1/2$ and $J sim 3600$ K, whi ch shows a gigantic non-linear optical effect. A band having about 500 meV energy dispersion is found in the first half of the Brillouin zone $(0le kb/pi <1/2)$, but disappears at $kb / pi sim 1/2$. Two dispersive features, expected from the spin-charge separation, as have been observed in other quasi-one-dimensional systems like Sr$_2$CuO$_3$, are not detected. These characteristic features are well reproduced by the $d$-$p$ chain model calculations with a small charge-transfer energy $Delta$ compared with that of one-dimensional Cu-O based compounds. We propose that this smaller $Delta$ is the origin of the absence of clear spin- and charge-separation in the photoemission spectra and strong non-linear optical effect in [Ni(chxn)$_2$Br]Br$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا