ﻻ يوجد ملخص باللغة العربية
A low-dimensional version of our main result is the following `converse of the Conway-Gordon-Sachs Theorem on intrinsic linking of the graph $K_6$ in 3-space: For any integer $z$ there are 6 points $1,2,3,4,5,6$ in 3-space, of which every two $i,j$ are joint by a polygonal line $ij$, the interior of one polygonal line is disjoint with any other polygonal line, the linking coefficient of any pair disjoint 3-cycles except for ${123,456}$ is zero, and for the exceptional pair ${123,456}$ is $2z+1$. We prove a higher-dimensional analogue, which is a `converse of a lemma by Segal-Spie.z.
Two triples of triangles having pairwise disjoint outlines in 3-space are called combinatorially isotopic if one triple can be obtained from the other by a continuous motion during which the outlines of the triangles remain pairwise disjoint. We conj
Conway and Gordon proved that for every spatial complete graph on six vertices, the sum of the linking numbers over all of the constituent two-component links is odd, and Kazakov and Korablev proved that for every spatial complete graph with arbitrar
In 1983, Conway and Gordon proved that for every spatial complete graph on six vertices, the sum of the linking numbers over all of the constituent two-component links is odd, and that for every spatial complete graph on seven vertices, the sum of th
We give a refined value group for the collection of triple linking numbers of links in the 3-sphere. Given two links with the same pairwise linking numbers we show that they have the same refined triple linking number collection if and only if the li
We establish some new relationships between Milnor invariants and Heegaard Floer homology. This includes a formula for the Milnor triple linking number from the link Floer complex, detection results for the Whitehead link and Borromean rings, and a s