ﻻ يوجد ملخص باللغة العربية
We give a refined value group for the collection of triple linking numbers of links in the 3-sphere. Given two links with the same pairwise linking numbers we show that they have the same refined triple linking number collection if and only if the links admit homeomorphic surface systems. Moreover these two conditions hold if and only if the link exteriors are bordant over $B mathbb{Z}^n$, and if and only if the third lower central series quotients $pi/pi_3$ of the link groups are isomorphic preserving meridians and longitudes. We also show that these conditions imply that the link groups have isomorphic fourth lower central series quotients $pi/pi_4$, preserving meridians.
We establish some new relationships between Milnor invariants and Heegaard Floer homology. This includes a formula for the Milnor triple linking number from the link Floer complex, detection results for the Whitehead link and Borromean rings, and a s
In the 1950s Milnor defined a family of higher order invariants generalizing the linking number. Even the first of these new invariants, the triple linking number, has received and fruitful study since its inception. In the case that $L$ has vanishin
In this paper we study Turan and Ramsey numbers in linear triple systems, defined as $3$-uniform hypergraphs in which any two triples intersect in at most one vertex. A famous result of Ruzsa and Szemeredi is that for any fixed $c>0$ and large enou
Every link in the 3-sphere has a projection to the plane where the only singularities are pairwise transverse triple points. The associated diagram, with height information at each triple point, is a triple-crossing diagram of the link. We give a set
Given a null-homologous knot $K$ in a rational homology 3-sphere $M$, and the standard infinite cyclic covering $tilde{X}$ of $(M,K)$, we define an invariant of triples of curves in $tilde{X}$, by means of equivariant triple intersections of surfaces