ﻻ يوجد ملخص باللغة العربية
In 1983, Conway and Gordon proved that for every spatial complete graph on six vertices, the sum of the linking numbers over all of the constituent two-component links is odd, and that for every spatial complete graph on seven vertices, the sum of the Arf invariants over all of the Hamiltonian knots is odd. In 2009, the second author gave integral lifts of the Conway-Gordon theorems in terms of the square of the linking number and the second coefficient of the Conway polynomial. In this paper, we generalize the integral Conway-Gordon theorems to complete graphs with arbitrary number of vertices greater than or equal to six. As an application, we show that for every rectilinear spatial complete graph whose number of vertices is greater than or equal to six, the sum of the second coefficients of the Conway polynomials over all of the Hamiltonian knots is determined explicitly in terms of the number of triangle-triangle Hopf links.
Conway and Gordon proved that for every spatial complete graph on six vertices, the sum of the linking numbers over all of the constituent two-component links is odd, and Kazakov and Korablev proved that for every spatial complete graph with arbitrar
For every spatial embedding of each graph in the Petersen family, it is known that the sum of the linking numbers over all of the constituent 2-component links is congruent to 1 modulo 2. In this paper, we give an integral lift of this formula in ter
Conway-Gordon proved that for every spatial complete graph on 6 vertices, the sum of the linking numbers over all of the constituent 2-component links is congruent to 1 modulo 2, and for every spatial complete graph on 7 vertices, the sum of the Arf
We give a Conway-Gordon type formula for invariants of knots and links in a spatial complete four-partite graph $K_{3,3,1,1}$ in terms of the square of the linking number and the second coefficient of the Conway polynomial. As an application, we show
A low-dimensional version of our main result is the following `converse of the Conway-Gordon-Sachs Theorem on intrinsic linking of the graph $K_6$ in 3-space: For any integer $z$ there are 6 points $1,2,3,4,5,6$ in 3-space, of which every two $i,j$