ﻻ يوجد ملخص باللغة العربية
The sizes of GPU applications are rapidly growing. They are exhausting the compute and memory resources of a single GPU, and are demanding the move to multiple GPUs. However, the performance of these applications scales sub-linearly with GPU count because of the overhead of data movement across multiple GPUs. Moreover, a lack of hardware support for coherency exacerbates the problem because a programmer must either replicate the data across GPUs or fetch the remote data using high-overhead off-chip links. To address these problems, we propose a multi-GPU system with truly shared memory (MGPU-TSM), where the main memory is physically shared across all the GPUs. We eliminate remote accesses and avoid data replication using an MGPU-TSM system, which simplifies the memory hierarchy. Our preliminary analysis shows that MGPU-TSM with 4 GPUs performs, on average, 3.9x? better than the current best performing multi-GPU configuration for standard application benchmarks.
Traditional graphics processing units (GPUs) suffer from the low memory capacity and demand for high memory bandwidth. To address these challenges, we propose Ohm-GPU, a new optical network based heterogeneous memory design for GPUs. Specifically, Oh
We propose ZnG, a new GPU-SSD integrated architecture, which can maximize the memory capacity in a GPU and address performance penalties imposed by an SSD. Specifically, ZnG replaces all GPU internal DRAMs with an ultra-low-latency SSD to maximize th
Memory system is often the main bottleneck in chipmultiprocessor (CMP) systems in terms of latency, bandwidth and efficiency, and recently additionally facing capacity and power problems in an era of big data. A lot of research works have been done t
While multi-GPU (MGPU) systems are extremely popular for compute-intensive workloads, several inefficiencies in the memory hierarchy and data movement result in a waste of GPU resources and difficulties in programming MGPU systems. First, due to the
Hybrid memory systems, comprised of emerging non-volatile memory (NVM) and DRAM, have been proposed to address the growing memory demand of applications. Emerging NVM technologies, such as phase-change memories (PCM), memristor, and 3D XPoint, have h