ﻻ يوجد ملخص باللغة العربية
Entrepreneurial regimes are topic, receiving ever more research attention. Existing studies on entrepreneurial regimes mainly use common methods from multivariate analysis and some type of institutional related analysis. In our analysis, the entrepreneurial regimes is analyzed by applying a novel polygonal symbolic data cluster analysis approach. Considering the diversity of data structures in Symbolic Data Analysis (SDA), interval-valued data is the most popular. Yet, this approach requires assuming equidistribution hypothesis. We use a novel polygonal cluster analysis approach to address this limitation with additional advantages: to store more information, to significantly reduce large data sets preserving the classical variability through polygon radius, and to open new possibilities in symbolic data analysis. We construct a dynamic cluster analysis algorithm for this type of data with proving main theorems and lemmata to justify its usage. In the empirical part we use dataset of Global Entrepreneurship Monitor (GEM) for year 2015 to construct typologies of countries based on responses to main entrepreneurial questions. The article presents a novel approach to clustering in statistical theory (with novel type of variables never accounted for) and application to a pressing issue in entrepreneurship with novel results.
An ultrametric topology formalizes the notion of hierarchical structure. An ultrametric embedding, referred to here as ultrametricity, is implied by a hierarchical embedding. Such hierarchical structure can be global in the data set, or local. By qua
We propose a new method for clustering of functional data using a $k$-means framework. We work within the elastic functional data analysis framework, which allows for decomposition of the overall variation in functional data into amplitude and phase
Clustering task of mixed data is a challenging problem. In a probabilistic framework, the main difficulty is due to a shortage of conventional distributions for such data. In this paper, we propose to achieve the mixed data clustering with a Gaussian
The clustering for functional data with misaligned problems has drawn much attention in the last decade. Most methods do the clustering after those functional data being registered and there has been little research using both functional and scalar v
In 2015, Driemel, Krivov{s}ija and Sohler introduced the $(k,ell)$-median problem for clustering polygonal curves under the Frechet distance. Given a set of input curves, the problem asks to find $k$ median curves of at most $ell$ vertices each that