ترغب بنشر مسار تعليمي؟ اضغط هنا

Elastic $k$-means clustering of functional data for posterior exploration, with an application to inference on acute respiratory infection dynamics

79   0   0.0 ( 0 )
 نشر من قبل James Tucker
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new method for clustering of functional data using a $k$-means framework. We work within the elastic functional data analysis framework, which allows for decomposition of the overall variation in functional data into amplitude and phase components. We use the amplitude component to partition functions into shape clusters using an automated approach. To select an appropriate number of clusters, we additionally propose a novel Bayesian Information Criterion defined using a mixture model on principal components estimated using functional Principal Component Analysis. The proposed method is motivated by the problem of posterior exploration, wherein samples obtained from Markov chain Monte Carlo algorithms are naturally represented as functions. We evaluate our approach using a simulated dataset, and apply it to a study of acute respiratory infection dynamics in San Luis Potos{i}, Mexico.



قيم البحث

اقرأ أيضاً

We propose a multivariate functional responses low rank regression model with possible high dimensional functional responses and scalar covariates. By expanding the slope functions on a set of sieve basis, we reconstruct the basis coefficients as a m atrix. To estimate these coefficients, we propose an efficient procedure using nuclear norm regularization. We also derive error bounds for our estimates and evaluate our method using simulations. We further apply our method to the Human Connectome Project neuroimaging data to predict cortical surface motor task-evoked functional magnetic resonance imaging signals using various clinical covariates to illustrate the usefulness of our results.
Task-based functional magnetic resonance imaging (task fMRI) is a non-invasive technique that allows identifying brain regions whose activity changes when individuals are asked to perform a given task. This contributes to the understanding of how the human brain is organized in functionally distinct subdivisions. Task fMRI experiments from high-resolution scans provide hundred of thousands of longitudinal signals for each individual, corresponding to measurements of brain activity over each voxel of the brain along the duration of the experiment. In this context, we propose some visualization techniques for high dimensional functional data relying on depth-based notions that allow for computationally efficient 2-dim representations of tfMRI data and that shed light on sample composition, outlier presence and individual variability. We believe that this step is crucial previously to any inferential approach willing to identify neuroscientific patterns across individuals, tasks and brain regions. We illustrate the proposed technique through a simulation study and demonstrate its application on a motor and language task fMRI experiment.
Under the hypothesis that both influenza and respiratory syncytial virus (RSV) are the two leading causes of acute respiratory infections (ARI), in this paper we have used a standard two-pathogen epidemic model as a regressor to explain, on a yearly basis, high season ARI data in terms of the contact rates and initial conditions of the mathematical model. The rationale is that ARI high season is a transient regime of a noisy system, e.g., the system is driven away from equilibrium every year by fluctuations in variables such as humidity, temperature, viral mutations and human behavior. Using the value of the replacement number as a phenotypic trait associated to fitness, we provide evidence that influenza and RSV coexists throughout the ARI high season through superinfection.
In Functional Data Analysis, data are commonly assumed to be smooth functions on a fixed interval of the real line. In this work, we introduce a comprehensive framework for the analysis of functional data, whose domain is a two-dimensional manifold a nd the domain itself is subject to variability from sample to sample. We formulate a statistical model for such data, here called Functions on Surfaces, which enables a joint representation of the geometric and functional aspects, and propose an associated estimation framework. We assess the validity of the framework by performing a simulation study and we finally apply it to the analysis of neuroimaging data of cortical thickness, acquired from the brains of different subjects, and thus lying on domains with different geometries.
121 - Karen Fuchs 2016
During the last decades, many methods for the analysis of functional data including classification methods have been developed. Nonetheless, there are issues that have not been adressed satisfactorily by currently available methods, as, for example, feature selection combined with variable selection when using multiple functional covariates. In this paper, a functional ensemble is combined with a penalized and constrained multinomial logit model. It is shown that this synthesis yields a powerful classification tool for functional data (possibly mixed with non-functional predictors), which also provides automatic variable selection. The choice of an appropriate, sparsity-inducing penalty allows to estimate most model coefficients to exactly zero, and permits class-specific coefficients in multiclass problems, such that feature selection is obtained. An additional constraint within the multinomial logit model ensures that the model coefficients can be considered as weights. Thus, the estimation results become interpretable with respect to the discriminative importance of the selected features, which is rated by a feature importance measure. In two application examples, data of a cell chip used for water quality monitoring experiments and phoneme data used for speech recognition, the interpretability as well as the selection results are examined. The classification performance is compared to various other classification approaches which are in common use.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا