ﻻ يوجد ملخص باللغة العربية
In 2015, Driemel, Krivov{s}ija and Sohler introduced the $(k,ell)$-median problem for clustering polygonal curves under the Frechet distance. Given a set of input curves, the problem asks to find $k$ median curves of at most $ell$ vertices each that minimize the sum of Frechet distances over all input curves to their closest median curve. A major shortcoming of their algorithm is that the input curves are restricted to lie on the real line. In this paper, we present a randomized bicriteria-approximation algorithm that works for polygonal curves in $mathbb{R}^d$ and achieves approximation factor $(1+epsilon)$ with respect to the clustering costs. The algorithm has worst-case running-time linear in the number of curves, polynomial in the maximum number of vertices per curve, i.e. their complexity, and exponential in $d$, $ell$, $epsilon$ and $delta$, i.e., the failure probability. We achieve this result through a shortcutting lemma, which guarantees the existence of a polygonal curve with similar cost as an optimal median curve of complexity $ell$, but of complexity at most $2ell-2$, and whose vertices can be computed efficiently. We combine this lemma with the superset-sampling technique by Kumar et al. to derive our clustering result. In doing so, we describe and analyze a generalization of the algorithm by Ackermann et al., which may be of independent interest.
The Euclidean $k$-center problem is a classical problem that has been extensively studied in computer science. Given a set $mathcal{G}$ of $n$ points in Euclidean space, the problem is to determine a set $mathcal{C}$ of $k$ centers (not necessarily p
textit{Clustering problems} often arise in the fields like data mining, machine learning etc. to group a collection of objects into similar groups with respect to a similarity (or dissimilarity) measure. Among the clustering problems, specifically te
We give a polynomial-time constant-factor approximation algorithm for maximum independent set for (axis-aligned) rectangles in the plane. Using a polynomial-time algorithm, the best approximation factor previously known is $O(loglog n)$. The results
Let $mathcal{P}$ be a polygonal domain of $h$ holes and $n$ vertices. We study the problem of constructing a data structure that can compute a shortest path between $s$ and $t$ in $mathcal{P}$ under the $L_1$ metric for any two query points $s$ and $
For a polygonal domain with $h$ holes and a total of $n$ vertices, we present algorithms that compute the $L_1$ geodesic diameter in $O(n^2+h^4)$ time and the $L_1$ geodesic center in $O((n^4+n^2 h^4)alpha(n))$ time, respectively, where $alpha(cdot)$