ﻻ يوجد ملخص باللغة العربية
We propose the SH model, a simplified version of the well-known SIR compartmental model of infectious diseases. With optimized parameters and initial conditions, this time-invariant two-parameter two-dimensional model is able to fit COVID-19 hospitalization data over several months with high accuracy (mean absolute percentage error below 15%). Moreover, we observed that, when the model is trained on a suitable two-week period around the hospitalization peak for Belgium, it forecasts the subsequent three-month decrease with mean absolute percentage error below 10%. However, when it is trained in the increase phase, it is less successful at forecasting the subsequent evolution.
Most COVID-19 predictive modeling efforts use statistical or mathematical models to predict national- and state-level COVID-19 cases or deaths in the future. These approaches assume parameters such as reproduction time, test positivity rate, hospital
Since two people came down a county of north Seattle with positive COVID-19 (coronavirus-19) in 2019, the current total cases in the United States (U.S.) are over 12 million. Predicting the pandemic trend under effective variables is crucial to help
The coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures in order to slow down the outbreak. Questions on whether governments have acted promptly enough, and whether lockdown measures ca
We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic in order to inform decision-makers of future demand and assess the societal value of possible interventions. For broad applicability, we focus on
This study explored the association between the five key air pollutants (Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), Particulate Matter (PM2.5, PM10), and Carbon Monoxide (CO)) and COVID-19 incidences in India. The COVID-19 confirmed cases, air po