ﻻ يوجد ملخص باللغة العربية
The coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures in order to slow down the outbreak. Questions on whether governments have acted promptly enough, and whether lockdown measures can be lifted soon have since been central in public discourse. Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential for addressing these questions and informing governments on future policy directions. To this end, this paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context -- we treat each country as a distinct data point, and exploit variations of policies across countries to learn country-specific policy effects. Our model utilizes a two-layer Gaussian process (GP) prior -- the lower layer uses a compartmental SEIR (Susceptible, Exposed, Infected, Recovered) model as a prior mean function with country-and-policy-specific parameters that capture fatality curves under counterfactual policies within each country, whereas the upper layer is shared across all countries, and learns lower-layer SEIR parameters as a function of a countrys features and its policy indicators. Our model combines the solid mechanistic foundations of SEIR models (Bayesian priors) with the flexible data-driven modeling and gradient-based optimization routines of machine learning (Bayesian posteriors) -- i.e., the entire model is trained end-to-end via stochastic variational inference. We compare the projections of COVID-19 fatalities by our model with other models listed by the Center for Disease Control (CDC), and provide scenario analyses for various lockdown and reopening strategies highlighting their impact on COVID-19 fatalities.
Subtractive dither is a powerful method for removing the signal dependence of quantization noise for coarsely-quantized signals. However, estimation from dithered measurements often naively applies the sample mean or midrange, even when the total noi
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adju
This paper aims at providing the summary of the Global Data Science Project (GDSC) for COVID-19. as on May 31 2020. COVID-19 has largely impacted on our societies through both direct and indirect effects transmitted by the policy measures to counter
We propose the SH model, a simplified version of the well-known SIR compartmental model of infectious diseases. With optimized parameters and initial conditions, this time-invariant two-parameter two-dimensional model is able to fit COVID-19 hospital
Updating observations of a signal due to the delays in the measurement process is a common problem in signal processing, with prominent examples in a wide range of fields. An important example of this problem is the nowcasting of COVID-19 mortality: