ﻻ يوجد ملخص باللغة العربية
This study explored the association between the five key air pollutants (Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), Particulate Matter (PM2.5, PM10), and Carbon Monoxide (CO)) and COVID-19 incidences in India. The COVID-19 confirmed cases, air pollution concentration and meteorological variables (temperature, wind speed, surface pressure) for district and city scale were obtained for 2019 and 2020. The location-based air pollution observations were converted to a raster surface using interpolation. The deaths and positive cases are reported so far were found highest in Mumbai (436 and 11394), followed by Ahmedabad (321 and 4991), Pune (129 and 2129), Kolkata (99 and 783), Indore (83 and 1699), Jaipur (53 and 1111), Ujjain (42 and 201), Surat (37 and 799), Vadodara (31 and 400), Chennai (23 and 2647), Bhopal (22 and 652), Thane (21 and 1889), respectively. Unlike the other studies, this study has not found any substantial association between air pollution and COVID-19 incidences at the district level. Considering the number of confirmed cases, the coefficient of determination (R2) values estimated as 0.003 for PM2.5, 0.002 for PM10 and SO2, 0.001 for CO, and 0.0002 for NO2, respectively. This suggests an absolute no significant association between air pollution and COVID-19 incidences (both confirmed cases and death) in India. The same association was observed for the number of deaths as well. For COVID-19 confirmed cases, none of the five pollutants has exhibited any statistically significant association. Additionally, except the wind speed, the climate variables have no produced any statistically significant association with the COVID-19 incidences.
Since December 2019, the world has been witnessing the gigantic effect of an unprecedented global pandemic called Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) - COVID-19. So far, 38,619,674 confirmed cases and 1,093,522 confirmed deaths
We propose the SH model, a simplified version of the well-known SIR compartmental model of infectious diseases. With optimized parameters and initial conditions, this time-invariant two-parameter two-dimensional model is able to fit COVID-19 hospital
When testing for a disease such as COVID-19, the standard method is individual testing: we take a sample from each individual and test these samples separately. An alternative is pooled testing (or group testing), where samples are mixed together in
The study carries out predictive modeling based on publicly available COVID-19 data for the duration 01 April to 20 June 2020 pertaining to India and five of its most infected states: Maharashtra, Tamil Nadu, Delhi, Gujarat, and Rajasthan using susce
In the absence of neither an effective treatment or vaccine and with an incomplete understanding of the epidemiological cycle, Govt. has implemented a nationwide lockdown to reduce COVID-19 transmission in India. To study the effect of social distanc