ﻻ يوجد ملخص باللغة العربية
Given a finite set $A subseteq mathbb{R}^d$, points $a_1,a_2,dotsc,a_{ell} in A$ form an $ell$-hole in $A$ if they are the vertices of a convex polytope which contains no points of $A$ in its interior. We construct arbitrarily large point sets in general position in $mathbb{R}^d$ having no holes of size $O(4^ddlog d)$ or more. This improves the previously known upper bound of order $d^{d+o(d)}$ due to Valtr. The basic version of our construction uses a certain type of equidistributed point sets, originating from numerical analysis, known as $(t,m,s)$-nets or $(t,s)$-sequences, yielding a bound of $2^{7d}$. The better bound is obtained using a variant of $(t,m,s)$-nets, obeying a relaxed equidistribution condition.
We prove a new upper bound on the number of $r$-rich lines (lines with at least $r$ points) in a `truly $d$-dimensional configuration of points $v_1,ldots,v_n in mathbb{C}^d$. More formally, we show that, if the number of $r$-rich lines is significan
Let $S$ be a set of $n$ points in general position in the plane, and let $X_{k,ell}(S)$ be the number of convex $k$-gons with vertices in $S$ that have exactly $ell$ points of $S$ in their interior. We prove several equalities for the numbers $X_{k,e
Given a finite point set $P$ in the plane, a subset $S subseteq P$ is called an island in $P$ if $conv(S) cap P = S$. We say that $Ssubset P$ is a visible island if the points in $S$ are pairwise visible and $S$ is an island in $P$. The famous Big-li
Let $L$ be a set of $n$ lines in $R^3$ that is contained, when represented as points in the four-dimensional Plucker space of lines in $R^3$, in an irreducible variety $T$ of constant degree which is emph{non-degenerate} with respect to $L$ (see belo
This paper studies problems related to visibility among points in the plane. A point $x$ emph{blocks} two points $v$ and $w$ if $x$ is in the interior of the line segment $bar{vw}$. A set of points $P$ is emph{$k$-blocked} if each point in $P$ is ass