ﻻ يوجد ملخص باللغة العربية
We prove a new upper bound on the number of $r$-rich lines (lines with at least $r$ points) in a `truly $d$-dimensional configuration of points $v_1,ldots,v_n in mathbb{C}^d$. More formally, we show that, if the number of $r$-rich lines is significantly larger than $n^2/r^d$ then there must exist a large subset of the points contained in a hyperplane. We conjecture that the factor $r^d$ can be replaced with a tight $r^{d+1}$. If true, this would generalize the classic Szemeredi-Trotter theorem which gives a bound of $n^2/r^3$ on the number of $r$-rich lines in a planar configuration. This conjecture was shown to hold in $mathbb{R}^3$ in the seminal work of Guth and Katz cite{GK10} and was also recently proved over $mathbb{R}^4$ (under some additional restrictions) cite{SS14}. For the special case of arithmetic progressions ($r$ collinear points that are evenly distanced) we give a bound that is tight up to low order terms, showing that a $d$-dimensional grid achieves the largest number of $r$-term progressions. The main ingredient in the proof is a new method to find a low degree polynomial that vanishes on many of the rich lines. Unlike previous applications of the polynomial method, we do not find this polynomial by interpolation. The starting observation is that the degree $r-2$ Veronese embedding takes $r$-collinear points to $r$ linearly dependent images. Hence, each collinear $r$-tuple of points, gives us a dependent $r$-tuple of images. We then use the design-matrix method of cite{BDWY12} to convert these local linear dependencies into a global one, showing that all the images lie in a hyperplane. This then translates into a low degree polynomial vanishing on the original set.
Let $L$ be a set of $n$ lines in $R^3$ that is contained, when represented as points in the four-dimensional Plucker space of lines in $R^3$, in an irreducible variety $T$ of constant degree which is emph{non-degenerate} with respect to $L$ (see belo
Given a finite set $A subseteq mathbb{R}^d$, points $a_1,a_2,dotsc,a_{ell} in A$ form an $ell$-hole in $A$ if they are the vertices of a convex polytope which contains no points of $A$ in its interior. We construct arbitrarily large point sets in gen
We prove that the number of edges of a multigraph $G$ with $n$ vertices is at most $O(n^2log n)$, provided that any two edges cross at most once, parallel edges are noncrossing, and the lens enclosed by every pair of parallel edges in $G$ contains at
We show that the maximum number of pairwise non-overlapping $k$-rich lenses (lenses formed by at least $k$ circles) in an arrangement of $n$ circles in the plane is $Oleft(frac{n^{3/2}log{(n/k^3)}}{k^{5/2}} + frac{n}{k} right)$, and the sum of the de
We count the ordered sum-free triplets of subsets in the group $mathbb{Z}/pmathbb{Z}$, i.e., the triplets $(A,B,C)$ of sets $A,B,C subset mathbb{Z}/pmathbb{Z}$ for which the equation $a+b=c$ has no solution with $ain A$, $b in B$ and $c in C$. Our ma