ﻻ يوجد ملخص باللغة العربية
A direct reconstruction algorithm based on Calderons linearization method for the reconstruction of isotropic conductivities is proposed for anisotropic conductivities in two-dimensions. To overcome the non-uniqueness of the anisotropic inverse conductivity problem, the entries of the unperturbed anisotropic tensors are assumed known emph{a priori}, and it remains to reconstruct the multiplicative scalar field. The quasi-conformal map in the plane facilitates the Calderon-based approach for anisotropic conductivities. The method is demonstrated on discontinuous radially symmetric conductivities of high and low contrast.
The inverse problem in Acousto-Electric tomography concerns the reconstruction of the electric conductivity in a domain from knowledge of the power density function in the interior of the body. This interior power density results from currents prescr
High-precision numerical scheme for nonlinear hyperbolic evolution equations is proposed based on the spectral method. The detail discretization processes are discussed in case of one-dimensional Klein-Gordon equations. In conclusion, a numerical sch
In this work, we are interested in the determination of the shape of the scatterer for the two dimensional time harmonic inverse medium scattering problems in acoustics. The scatterer is assumed to be a piecewise constant function with a known value
Fluid flows containing dilute or dense suspensions of thin fibers are widespread in biological and industrial processes. To describe the motion of a thin immersed fiber, or to describe the forces acting on it, it is convenient to work with one-dimens
In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We d