ترغب بنشر مسار تعليمي؟ اضغط هنا

Levenberg-Marquardt algorithm for acousto-electric tomography based on the complete electrode model

412   0   0.0 ( 0 )
 نشر من قبل Kim Knudsen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The inverse problem in Acousto-Electric tomography concerns the reconstruction of the electric conductivity in a domain from knowledge of the power density function in the interior of the body. This interior power density results from currents prescribed at boundary electrodes (and can be obtained through electro-static boundary measurements together with auxiliary acoustic measurement. In Electrical Impedance Tomography, the complete electrode model is known to be the most accurate model for the forward modelling. In this paper, the reconstruction problem of Acousto-Electric tomography is posed using the (smooth) complete electrode model, and a Levenberg-Marquardt iteration is formulated in appropriate function spaces. This results in a system of partial differential equations to be solved in each iteration. To increase the computational efficiency and stability, a strategy based on both the complete electrode model and the continuum model with Dirichlet boundary condition is proposed. The system of equations is implemented numerically for a two dimensional scenario and the algorithm is tested on two different numerical phantoms, a heart and lung model and a human brain model. Several numerical experiments are carried out confirming the feasibility, accuracy and stability of the methods.



قيم البحث

اقرأ أيضاً

A direct reconstruction algorithm based on Calderons linearization method for the reconstruction of isotropic conductivities is proposed for anisotropic conductivities in two-dimensions. To overcome the non-uniqueness of the anisotropic inverse condu ctivity problem, the entries of the unperturbed anisotropic tensors are assumed known emph{a priori}, and it remains to reconstruct the multiplicative scalar field. The quasi-conformal map in the plane facilitates the Calderon-based approach for anisotropic conductivities. The method is demonstrated on discontinuous radially symmetric conductivities of high and low contrast.
The phase retrieval problem, where one aims to recover a complex-valued image from far-field intensity measurements, is a classic problem encountered in a range of imaging applications. Modern phase retrieval approaches usually rely on gradient desce nt methods in a nonlinear minimization framework. Calculating closed-form gradients for use in these methods is tedious work, and formulating second order derivatives is even more laborious. Additionally, second order techniques often require the storage and inversion of large matrices of partial derivatives, with memory requirements that can be prohibitive for data-rich imaging modalities. We use a reverse-mode automatic differentiation (AD) framework to implement an efficient matrix-free version of the Levenberg-Marquardt (LM) algorithm, a longstanding method that finds popular use in nonlinear least-square minimization problems but which has seen little use in phase retrieval. Furthermore, we extend the basic LM algorithm so that it can be applied for general constrained optimization problems beyond just the least-square applications. Since we use AD, we only need to specify the physics-based forward model for a specific imaging application; the derivative terms are calculated automatically through matrix-vector products, without explicitly forming any large Jacobian or Gauss-Newton matrices. We demonstrate that this algorithm can be used to solve both the unconstrained ptychographic object retrieval problem and the constrained blind ptychographic object and probe retrieval problems, under both the Gaussian and Poisson noise models, and that this method outperforms best-in-class first-order ptychographic reconstruction methods: it provides excellent convergence guarantees with (in many cases) a superlinear rate of convergence, all with a computational cost comparable to, or lower than, the tested first-order algorithms.
This paper considers the reconstruction problem in Acousto-Electrical Tomography, i.e., the problem of estimating a spatially varying conductivity in a bounded domain from measurements of the internal power densities resulting from different prescrib ed boundary conditions. Particular emphasis is placed on the limited angle scenario, in which the boundary conditions are supported only on a part of the boundary. The reconstruction problem is formulated as an optimization problem in a Hilbert space setting and solved using Landweber iteration. The resulting algorithm is implemented numerically in two spatial dimensions and tested on simulated data. The results quantify the intuition that features close to the measurement boundary are stably reconstructed and features further away are less well reconstructed. Finally, the ill-posedness of the limited angle problem is quantified numerically using the singular value decomposition of the corresponding linearized problem.
High-precision numerical scheme for nonlinear hyperbolic evolution equations is proposed based on the spectral method. The detail discretization processes are discussed in case of one-dimensional Klein-Gordon equations. In conclusion, a numerical sch eme with the order of total calculation cost $O(N log 2N)$ is proposed. As benchmark results, the relation between the numerical precision and the discretization unit size are demonstrated.
Implementations in R of classical general-purpose algorithms generally have two major limitations which make them unusable in complex problems: too loose convergence criteria and too long calculation time. By relying on a Marquardt-Levenberg algorith m (MLA), a Newton-like method particularly robust for solving local optimization problems, we provide with marqLevAlg package an efficient and general-purpose local optimizer which (i) prevents convergence to saddle points by using a stringent convergence criterion based on the relative distance to minimum/maximum in addition to the stability of the parameters and of the objective function; and (ii) reduces the computation time in complex settings by allowing parallel calculations at each iteration. We demonstrate through a variety of cases from the literature that our implementation reliably and consistently reaches the optimum (even when other optimizers fail), and also largely reduces computational time in complex settings through the example of maximum likelihood estimation of different sophisticated statistical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا