ﻻ يوجد ملخص باللغة العربية
The unshielded nature of gravity means that stellar systems are inherently inhomogeneous. As a result, stars do not move in straight lines. This obvious fact severely complicates the kinetic theory of stellar systems because position and velocity turn out to be poor coordinates with which to describe stellar orbits - instead, one must use angle-action variables. Moreover, the slow relaxation of star clusters and galaxies can be enhanced or suppressed by collective interactions (polarisation effects) involving many stars simultaneously. These collective effects are also present in plasmas; in that case, they are accounted for by the Balescu-Lenard (BL) equation, which is a kinetic equation in velocity space. Recently several authors have shown how to account for both inhomogeneity and collective effects in the kinetic theory of stellar systems by deriving an angle-action generalisation of the BL equation. Unfortunately their derivations are long and complicated, involving multiple coordinate transforms, contour integrals in the complex plane, and so on. On the other hand, Rostokers superposition principle allows one to pretend that a long-range interacting $N$-body system, such as a plasma or star cluster, consists merely of uncorrelated particles that are dressed by polarisation clouds. In this paper we use Rostokers principle to provide a simple, intuitive derivation of the BL equation for stellar systems which is much shorter than others in the literature. It also allows us to straightforwardly connect the BL picture of self-gravitating kinetics to the classical two-body relaxation theory of uncorrelated flybys pioneered by Chandrasekhar.
The traditional Chandrasekhar picture of the slow relaxation of stellar systems assumes that stars orbits are only modified by occasional, uncorrelated, two-body flyby encounters with other stars. However, the long-range nature of gravity means that
In this work, we elucidate the mathematical structure of the integral that arises when computing the electron-ion temperature equilibration time for a homogeneous weakly-coupled plasma from the Lenard-Balescu equation. With some minor approximations,
In the mean-field regime, the evolution of a gas of $N$ interacting particles is governed in first approximation by a Vlasov type equation with a self-induced force field. This equation is conservative and describes return to equilibrium only in the
Starting from the action-angle variables and using a standard asymptotic expansion, here we present a new derivation of the Wave Kinetic Equation for resonant process of the type $2leftrightarrow 2$. Despite not offering new physical results and desp
We introduce CoSHA: a Code for Stellar properties Heuristic Assignment. In order to estimate the stellar properties, CoSHA implements a Gradient Tree Boosting algorithm to label each star across the parameter space ($T_{text{eff}}$, $log{g}$, $left[t