ﻻ يوجد ملخص باللغة العربية
Starting from the action-angle variables and using a standard asymptotic expansion, here we present a new derivation of the Wave Kinetic Equation for resonant process of the type $2leftrightarrow 2$. Despite not offering new physical results and despite not being more rigorous than others, our procedure has the merit of being straightforward; it allows for a direct control of the random phase and random amplitude hypothesis of the initial wave field. We show that the Wave Kinetic Equation can be derived assuming only initial random phases. The random amplitude approximation has to be taken only at the end, after taking the weak nonlinearity and large box limits. This is because the $delta$-function over frequencies contains the amplitude-dependent nonlinear correction which should be dropped before the random amplitude approximation applies. If $epsilon$ is the small parameter in front of the anharmonic part of the Hamiltonian, the time scale associated with the Wave Kinetic equation is shown to be $1/epsilon^2$. We give evidence that random phase and amplitude hypotheses persist up to a time of the order $1/epsilon$.
We consider the effect of the wind and the dissipation on the nonlinear stages of the modulational instability. By applying a suitable transformation, we map the forced/damped Nonlinear Schrodinger (NLS) equation into the standard NLS with constant c
It is shown that the Truncated Euler Equations, i.e. a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a conf
A detailed comparison between data from experimental measurements and numerical simulations of Lagrangian velocity structure functions in turbulence is presented. By integrating information from experiments and numerics, a quantitative understanding
As a counterpart to our previous study of the stationary distribution formed by sums of positions at the Feigenbaum point via the period-doubling cascade in the logistic map (Eur. Phys. J. B 87 32, (2014)), we determine the family of related distribu
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame