ﻻ يوجد ملخص باللغة العربية
In the mean-field regime, the evolution of a gas of $N$ interacting particles is governed in first approximation by a Vlasov type equation with a self-induced force field. This equation is conservative and describes return to equilibrium only in the very weak sense of Landau damping. However, the first correction to this approximation is given by the Lenard-Balescu operator, which dissipates entropy on the very long timescale $O(N)$. In this paper, we show how one can derive rigorously this correction on intermediate timescales (of order $O(N^r)$ for $r<1$), close to equilibrium.
In this work, we elucidate the mathematical structure of the integral that arises when computing the electron-ion temperature equilibration time for a homogeneous weakly-coupled plasma from the Lenard-Balescu equation. With some minor approximations,
Let $$L_0=suml_{j=1}^nM_j^0D_j+M_0^0,,,,,D_j=frac{1}{i}frac{pa}{paxj}, quad xinRn,$$ be a constant coefficient first-order partial differential system, where the matrices $M_j^0$ are Hermitian. It is assumed that the homogeneous part is stron
In arXiv:1201.4067 and arXiv:1611.08030, Eyink and Shi and Chibbaro et al., respectively, formally derived an infinite, coupled hierarchy of equations for the spectral correlation functions of a system of weakly interacting nonlinear dispersive waves
This article will review recent results on dimensional reduction for branched polymers, and discuss implications for critical phenomena. Parisi and Sourlas argued in 1981 that branched polymers fall into the universality class of the Yang-Lee edge in
A mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the Lifshitz-Slyozov-Wagner theory of Ostwald ripening in two-phase systems