ﻻ يوجد ملخص باللغة العربية
We study dualities for 3d $mathcal{N} = 2$ $SU(N_c)$ SQCD at Chern-Simons level $k$ in presence of an adjoint with polynomial superpotential. The dualities are dubbed chiral because there is a different amount of fundamentals $N_f$ and antifundamentals $N_a$. We build a complete classification of such dualities in terms of $ |N_f - N_a| $ and $k$. The classification is obtained by studying the flow from the non-chiral case, and we corroborate our proposals by matching the three-sphere partition functions. Finally, we revisit the case of $SU(N_c)$ SQCD without the adjoint, comparing our results with previous literature.
Recently a very interesting three-dimensional $mathcal{N}=2$ supersymmetric theory with $SU(3)$ global symmetry was discussed by several authors. We denote this model by $T_x$. This was conjectured to have two dual descriptions, one with explicit sup
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative fe
Aspects of three dimensional $mathcal{N}=2$ gauge theories with monopole superpotentials and their dualities are investigated. The moduli spaces of a number of such theories are studied using Hilbert series. Moreover, we propose new dualities involvi
Seiberg-like dualities in $2+1$d quiver gauge theories with $4$ supercharges are investigated. We consider quivers made of various combinations of classical gauge groups $U(N)$, $Sp(N)$, $SO(N)$ and $SU(N)$. Our main focus is the mapping of the super
We study gauge theories with N=1 supersymmetry in 2+1 dimensions. We start by calculating the 1-loop effective superpotential for matter in an arbitrary representation. We then restrict ourselves to gauge theories with fundamental matter. Using the 1