ﻻ يوجد ملخص باللغة العربية
Aspects of three dimensional $mathcal{N}=2$ gauge theories with monopole superpotentials and their dualities are investigated. The moduli spaces of a number of such theories are studied using Hilbert series. Moreover, we propose new dualities involving quadratic powers for the monopole superpotentials, for unitary, symplectic and orthogonal gauge groups. These dualities are then tested using the three sphere partition function and matching of the Hilbert series. We also provide an argument for the obstruction to the duality for theories with quartic monopole superpotentials.
Seiberg-like dualities in $2+1$d quiver gauge theories with $4$ supercharges are investigated. We consider quivers made of various combinations of classical gauge groups $U(N)$, $Sp(N)$, $SO(N)$ and $SU(N)$. Our main focus is the mapping of the super
The relation between open topological strings and representation theory of symmetric quivers is explored beyond the original setting of the knot-quiver correspondence. Multiple cover generalizations of the skein relation for boundaries of holomorphic
We construct several novel examples of 3d $mathcal{N}=2$ models whose free energy scales as $N^{3/2}$ at large $N$. This is the first step towards the identification of field theories with an M-theory dual. Furthermore, we match the volumes extracted
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative fe
We study dualities for 3d $mathcal{N} = 2$ $SU(N_c)$ SQCD at Chern-Simons level $k$ in presence of an adjoint with polynomial superpotential. The dualities are dubbed chiral because there is a different amount of fundamentals $N_f$ and antifundamenta