ﻻ يوجد ملخص باللغة العربية
Recently a very interesting three-dimensional $mathcal{N}=2$ supersymmetric theory with $SU(3)$ global symmetry was discussed by several authors. We denote this model by $T_x$. This was conjectured to have two dual descriptions, one with explicit supersymmetry and emergent flavor symmetry and the other with explicit flavor symmetry and emergent supersymmetry. We discuss a third description of the model which has both flavor symmetry and supersymmetry manifest. We then investigate models which can be constructed by using $T_x$ as a building block gauging the global symmetry and paying special attention to the global structure of the gauge group. We conjecture several cases of $mathcal{N}=2$ mirror dualities involving such constructions with the dual being either a simple $mathcal{N}=2$ Wess-Zumino model or a discrete gauging thereof.
We study dualities for 3d $mathcal{N} = 2$ $SU(N_c)$ SQCD at Chern-Simons level $k$ in presence of an adjoint with polynomial superpotential. The dualities are dubbed chiral because there is a different amount of fundamentals $N_f$ and antifundamenta
We study gauge theories with N=1 supersymmetry in 2+1 dimensions. We start by calculating the 1-loop effective superpotential for matter in an arbitrary representation. We then restrict ourselves to gauge theories with fundamental matter. Using the 1
We study N = 2* theories with gauge group U(N) and use equivariant localization to calculate the quantum expectation values of the simplest chiral ring elements. These are expressed as an expansion in the mass of the adjoint hypermultiplet, with coef
We construct several novel examples of 3d $mathcal{N}=2$ models whose free energy scales as $N^{3/2}$ at large $N$. This is the first step towards the identification of field theories with an M-theory dual. Furthermore, we match the volumes extracted
S-duality domain walls are extended objects in supersymmetric gauge theories with several rich physical properties. This paper focuses on 3d N=2 gauge theories associated with S-duality walls in the 4d N=2 SU(N) gauge theory with 2N flavours. The the