ﻻ يوجد ملخص باللغة العربية
Max-margin methods for binary classification such as the support vector machine (SVM) have been extended to the structured prediction setting under the name of max-margin Markov networks ($M^3N$), or more generally structural SVMs. Unfortunately, these methods are statistically inconsistent when the relationship between inputs and labels is far from deterministic. We overcome such limitations by defining the learning problem in terms of a max-min margin formulation, naming the resulting method max-min margin Markov networks ($M^4N$). We prove consistency and finite sample generalization bounds for $M^4N$ and provide an explicit algorithm to compute the estimator. The algorithm achieves a generalization error of $O(1/sqrt{n})$ for a total cost of $O(n)$ projection-oracle calls (which have at most the same cost as the max-oracle from $M^3N$). Experiments on multi-class classification, ordinal regression, sequence prediction and ranking demonstrate the effectiveness of the proposed method.
Structured output prediction is an important machine learning problem both in theory and practice, and the max-margin Markov network (mcn) is an effective approach. All state-of-the-art algorithms for optimizing mcn objectives take at least $O(1/epsi
The foundational concept of Max-Margin in machine learning is ill-posed for output spaces with more than two labels such as in structured prediction. In this paper, we show that the Max-Margin loss can only be consistent to the classification task un
A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional a
We present a new model of neural networks called Min-Max-Plus Neural Networks (MMP-NNs) based on operations in tropical arithmetic. In general, an MMP-NN is composed of three types of alternately stacked layers, namely linear layers, min-plus layers
We consider deterministic Markov decision processes (MDPs) and apply max-plus algebra tools to approximate the value iteration algorithm by a smaller-dimensional iteration based on a representation on dictionaries of value functions. The setup natura