ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistent Structured Prediction with Max-Min Margin Markov Networks

62   0   0.0 ( 0 )
 نشر من قبل Alex Nowak-Vila
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Max-margin methods for binary classification such as the support vector machine (SVM) have been extended to the structured prediction setting under the name of max-margin Markov networks ($M^3N$), or more generally structural SVMs. Unfortunately, these methods are statistically inconsistent when the relationship between inputs and labels is far from deterministic. We overcome such limitations by defining the learning problem in terms of a max-min margin formulation, naming the resulting method max-min margin Markov networks ($M^4N$). We prove consistency and finite sample generalization bounds for $M^4N$ and provide an explicit algorithm to compute the estimator. The algorithm achieves a generalization error of $O(1/sqrt{n})$ for a total cost of $O(n)$ projection-oracle calls (which have at most the same cost as the max-oracle from $M^3N$). Experiments on multi-class classification, ordinal regression, sequence prediction and ranking demonstrate the effectiveness of the proposed method.



قيم البحث

اقرأ أيضاً

Structured output prediction is an important machine learning problem both in theory and practice, and the max-margin Markov network (mcn) is an effective approach. All state-of-the-art algorithms for optimizing mcn objectives take at least $O(1/epsi lon)$ number of iterations to find an $epsilon$ accurate solution. Recent results in structured optimization suggest that faster rates are possible by exploiting the structure of the objective function. Towards this end citet{Nesterov05} proposed an excessive gap reduction technique based on Euclidean projections which converges in $O(1/sqrt{epsilon})$ iterations on strongly convex functions. Unfortunately when applied to mcn s, this approach does not admit graphical model factorization which, as in many existing algorithms, is crucial for keeping the cost per iteration tractable. In this paper, we present a new excessive gap reduction technique based on Bregman projections which admits graphical model factorization naturally, and converges in $O(1/sqrt{epsilon})$ iterations. Compared with existing algorithms, the convergence rate of our method has better dependence on $epsilon$ and other parameters of the problem, and can be easily kernelized.
The foundational concept of Max-Margin in machine learning is ill-posed for output spaces with more than two labels such as in structured prediction. In this paper, we show that the Max-Margin loss can only be consistent to the classification task un der highly restrictive assumptions on the discrete loss measuring the error between outputs. These conditions are satisfied by distances defined in tree graphs, for which we prove consistency, thus being the first losses shown to be consistent for Max-Margin beyond the binary setting. We finally address these limitations by correcting the concept of Max-Margin and introducing the Restricted-Max-Margin, where the maximization of the loss-augmented scores is maintained, but performed over a subset of the original domain. The resulting loss is also a generalization of the binary support vector machine and it is consistent under milder conditions on the discrete loss.
A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional a nd structural relations often exist between the dimensions. The motivation of this work is to learn the output dependencies that may lie in the output data in order to improve the prediction accuracy. Unfortunately, feedforward networks are unable to exploit the relations between the outputs. In order to overcome this issue, we propose in this paper a regularization scheme for training neural networks for these particular tasks using a multi-task framework. Our scheme aims at incorporating the learning of the output representation $y$ in the training process in an unsupervised fashion while learning the supervised mapping function $x to y$. We evaluate our framework on a facial landmark detection problem which is a typical structured output task. We show over two public challenging datasets (LFPW and HELEN) that our regularization scheme improves the generalization of deep neural networks and accelerates their training. The use of unlabeled data and label-only data is also explored, showing an additional improvement of the results. We provide an opensource implementation (https://github.com/sbelharbi/structured-output-ae) of our framework.
391 - Ye Luo , Shiqing Fan 2021
We present a new model of neural networks called Min-Max-Plus Neural Networks (MMP-NNs) based on operations in tropical arithmetic. In general, an MMP-NN is composed of three types of alternately stacked layers, namely linear layers, min-plus layers and max-plus layers. Specifically, the latter two types of layers constitute the nonlinear part of the network which is trainable and more sophisticated compared to the nonlinear part of conventional neural networks. In addition, we show that with higher capability of nonlinearity expression, MMP-NNs are universal approximators of continuous functions, even when the number of multiplication operations is tremendously reduced (possibly to none in certain extreme cases). Furthermore, we formulate the backpropagation algorithm in the training process of MMP-NNs and introduce an algorithm of normalization to improve the rate of convergence in training.
114 - Francis Bach 2019
We consider deterministic Markov decision processes (MDPs) and apply max-plus algebra tools to approximate the value iteration algorithm by a smaller-dimensional iteration based on a representation on dictionaries of value functions. The setup natura lly leads to novel theoretical results which are simply formulated due to the max-plus algebra structure. For example, when considering a fixed (non adaptive) finite basis, the computational complexity of approximating the optimal value function is not directly related to the number of states, but to notions of covering numbers of the state space. In order to break the curse of dimensionality in factored state-spaces, we consider adaptive basis that can adapt to particular problems leading to an algorithm similar to matching pursuit from signal processing. They currently come with no theoretical guarantees but work empirically well on simple deterministic MDPs derived from low-dimensional continuous control problems. We focus primarily on deterministic MDPs but note that the framework can be applied to all MDPs by considering measure-based formulations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا