ﻻ يوجد ملخص باللغة العربية
Structured output prediction is an important machine learning problem both in theory and practice, and the max-margin Markov network (mcn) is an effective approach. All state-of-the-art algorithms for optimizing mcn objectives take at least $O(1/epsilon)$ number of iterations to find an $epsilon$ accurate solution. Recent results in structured optimization suggest that faster rates are possible by exploiting the structure of the objective function. Towards this end citet{Nesterov05} proposed an excessive gap reduction technique based on Euclidean projections which converges in $O(1/sqrt{epsilon})$ iterations on strongly convex functions. Unfortunately when applied to mcn s, this approach does not admit graphical model factorization which, as in many existing algorithms, is crucial for keeping the cost per iteration tractable. In this paper, we present a new excessive gap reduction technique based on Bregman projections which admits graphical model factorization naturally, and converges in $O(1/sqrt{epsilon})$ iterations. Compared with existing algorithms, the convergence rate of our method has better dependence on $epsilon$ and other parameters of the problem, and can be easily kernelized.
Max-margin methods for binary classification such as the support vector machine (SVM) have been extended to the structured prediction setting under the name of max-margin Markov networks ($M^3N$), or more generally structural SVMs. Unfortunately, the
The foundational concept of Max-Margin in machine learning is ill-posed for output spaces with more than two labels such as in structured prediction. In this paper, we show that the Max-Margin loss can only be consistent to the classification task un
We present an improved algorithm for properly learning convex polytopes in the realizable PAC setting from data with a margin. Our learning algorithm constructs a consistent polytope as an intersection of about $t log t$ halfspaces with margins in ti
Few-shot object detection has made substantial progressby representing novel class objects using the feature representation learned upon a set of base class objects. However,an implicit contradiction between novel class classification and representat
We consider deterministic Markov decision processes (MDPs) and apply max-plus algebra tools to approximate the value iteration algorithm by a smaller-dimensional iteration based on a representation on dictionaries of value functions. The setup natura