ﻻ يوجد ملخص باللغة العربية
We present a new model of neural networks called Min-Max-Plus Neural Networks (MMP-NNs) based on operations in tropical arithmetic. In general, an MMP-NN is composed of three types of alternately stacked layers, namely linear layers, min-plus layers and max-plus layers. Specifically, the latter two types of layers constitute the nonlinear part of the network which is trainable and more sophisticated compared to the nonlinear part of conventional neural networks. In addition, we show that with higher capability of nonlinearity expression, MMP-NNs are universal approximators of continuous functions, even when the number of multiplication operations is tremendously reduced (possibly to none in certain extreme cases). Furthermore, we formulate the backpropagation algorithm in the training process of MMP-NNs and introduce an algorithm of normalization to improve the rate of convergence in training.
Spiking Neural Networks (SNNs) have been attached great importance due to their biological plausibility and high energy-efficiency on neuromorphic chips. As these chips are usually resource-constrained, the compression of SNNs is thus crucial along t
Spiking Neural Networks (SNNs), as bio-inspired energy-efficient neural networks, have attracted great attentions from researchers and industry. The most efficient way to train deep SNNs is through ANN-SNN conversion. However, the conversion usually
In this paper we build upon the recent observation that the 802.11 rate region is log-convex and, for the first time, characterise max-min fair rate allocations for a large class of 802.11 wireless mesh networks. By exploiting features of the 802.11e
Recurrent neural networks (RNNs) are widely used as a memory model for sequence-related problems. Many variants of RNN have been proposed to solve the gradient problems of training RNNs and process long sequences. Although some classical models have
We introduce a new dataset of logical entailments for the purpose of measuring models ability to capture and exploit the structure of logical expressions against an entailment prediction task. We use this task to compare a series of architectures whi