ﻻ يوجد ملخص باللغة العربية
The surface code is a prominent topological error-correcting code exhibiting high fault-tolerance accuracy thresholds. Conventional schemes for error correction with the surface code place qubits on a planar grid and assume native CNOT gates between the data qubits with nearest-neighbor ancilla qubits. Here, we present surface code error-correction schemes using $textit{only}$ Pauli measurements on single qubits and on pairs of nearest-neighbor qubits. In particular, we provide several qubit layouts that offer favorable trade-offs between qubit overhead, circuit depth and connectivity degree. We also develop minimized measurement sequences for syndrome extraction, enabling reduced logical error rates and improved fault-tolerance thresholds. Our work applies to topologically protected qubits realized with Majorana zero modes and to similar systems in which multi-qubit Pauli measurements rather than CNOT gates are the native operations.
Although Majorana platforms are promising avenues to realizing topological quantum computing, they are still susceptible to errors from thermal noise and other sources. We show that the error rate of Majorana qubits can be drastically reduced using a
High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault-tolerance, the ability to correct errors faster than they occur. The central requirement for fault-tolerance is expressed in t
Leakage outside of the qubit computational subspace, present in many leading experimental platforms, constitutes a threatening error for quantum error correction (QEC) for qubits. We develop a leakage-detection scheme via Hidden Markov models (HMMs)
We analyze a readout scheme for Majorana qubits based on dispersive coupling to a resonator. We consider two variants of Majorana qubits: the Majorana transmon and the Majorana box qubit. In both cases, the qubit-resonator interaction can produce siz
Simulations of high-complexity quantum systems, which are intractable for classical computers, can be efficiently done with quantum computers. Similarly, the increasingly complex quantum electronic circuits themselves will also need efficient simulat