ﻻ يوجد ملخص باللغة العربية
High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault-tolerance, the ability to correct errors faster than they occur. The central requirement for fault-tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends on many details, a common target is the ~1% error threshold of the well-known surface code. Reaching two-qubit gate fidelities above 99% has been a long-standing major goal for semiconductor spin qubits. These qubits are well positioned for scaling as they can leverage advanced semiconductor technology. Here we report a spin-based quantum processor in silicon with single- and two-qubit gate fidelities all above 99.5%, extracted from gate set tomography. The average single-qubit gate fidelities remain above 99% when including crosstalk and idling errors on the neighboring qubit. Utilizing this high-fidelity gate set, we execute the demanding task of calculating molecular ground state energies using a variational quantum eigensolver algorithm. Now that the 99% barrier for the two-qubit gate fidelity has been surpassed, semiconductor qubits have gained credibility as a leading platform, not only for scaling but also for high-fidelity control.
A quantum computer will use the properties of quantum physics to solve certain computational problems much faster than otherwise possible. One promising potential implementation is to use superconducting quantum bits in the circuit quantum electrodyn
The development of robust architectures capable of large-scale fault-tolerant quantum computation should consider both their quantum error-correcting codes, and the underlying physical qubits upon which they are built, in tandem. Following this desig
Bosonic quantum error correction is a viable option for realizing error-corrected quantum information processing in continuous-variable bosonic systems. Various single-mode bosonic quantum error-correcting codes such as cat, binomial, and GKP codes h
The surface code is a promising candidate for fault-tolerant quantum computation, achieving a high threshold error rate with nearest-neighbor gates in two spatial dimensions. Here, through a series of numerical simulations, we investigate how the pre
Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum er