ﻻ يوجد ملخص باللغة العربية
Although Majorana platforms are promising avenues to realizing topological quantum computing, they are still susceptible to errors from thermal noise and other sources. We show that the error rate of Majorana qubits can be drastically reduced using a 1D repetition code. The success of the code is due the imbalance between the phase error rate and the flip error rate. We demonstrate how a repetition code can be naturally constructed from segments of Majorana nanowires. We find the optimal lifetime may be extended from a millisecond to over one second.
Holographic quantum error-correcting codes have been proposed as toy models that describe key aspects of the AdS/CFT correspondence. In this work, we introduce a versatile framework of Majorana dimers capturing the intersection of stabilizer and Gaus
We propose and study a realistic model for the decoherence of topological qubits, based on Majorana fermions in one-dimensional topological superconductors. The source of decoherence is the fluctuating charge on a capacitively coupled gate, modeled b
We report the first nonadditive quantum error-correcting code, namely, a $((9,12,3))$ code which is a 12-dimensional subspace within a 9-qubit Hilbert space, that outperforms the optimal stabilizer code of the same length by encoding more levels while correcting arbitrary single-qubit errors.
Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum er
Topological quantum computation encodes quantum information nonlocally by nucleating non-Abelian anyons separated by distances $L$, typically spanning the qubit device size. This nonlocality renders topological qubits exponentially immune to dephasin