ﻻ يوجد ملخص باللغة العربية
When a $(1+1)$-dimensional nonlinear PDE in real function $eta(x,t)$ admits localized traveling solutions we can consider $L$ to be the average width of the envelope, $A$ the average value of the amplitude of the envelope, and $V$ the group velocity of such a solution. The replacement rule (RR or nonlinear dispersion relation) procedure is able to provide a simple qualitative relation between these three parameters, without actually solve the equation. Examples are provided from KdV, C-H and BBM equations, but the procedure appears to be almost universally valid for such $(1+1)$-dimensional nonlinear PDE and their localized traveling solutions cite{3}.
Surface and interfacial weakly-nonlinear ring waves in a two-layer fluid are modelled numerically, within the framework of the recently derived 2+1-dimensional cKdV-type equation. In a case study, we consider concentric waves from a localised initial
We theoretically describe the quasi one-dimensional transverse spreading of a light pulse propagating in a nonlinear optical material in the presence of a uniform background light intensity. For short propagation distances the pulse can be described
We consider evolution of wave pulses with formation of dispersive shock waves in framework of fully nonlinear shallow-water equations. Situations of initial elevations or initial dips on the water surface are treated and motion of the dispersive shoc
In this work, we develop Non-Intrusive Reduced Order Models (NIROMs) that combine Proper Orthogonal Decomposition (POD) with a Radial Basis Function (RBF) interpolation method to construct efficient reduced order models for time-dependent problems ar
We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of diffusion and dispersion are known to give rise to monotonic and oscillatory travelin