ﻻ يوجد ملخص باللغة العربية
We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A stable localized spatial structure in the form of a dark dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a $tanh$ function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope, at the same time the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted in this system due to the transformation of the dissipative soliton which takes place during the interaction of a pulse with a continuous wave, such as: retention of the pulse shape during the transmission of impulses in a long nonlinear cavity; giant amplification of a seed pulse, which takes energy due to redistribution of the pump continuous energy into the signal.
We consider the interplay between nonlocal nonlinearity and randomness for two different nonlinear Schrodinger models. We show that stability of bright solitons in presence of random perturbations increases dramatically with the nonlocality-induced f
Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optic
The generation of high-intensity optical fields from harmonic-wave photons, interacting via a cross-phase modulation with dark solitons both propagating in a Kerr nonlinear medium, is examined. The focus is on a pump consisting of time-entangled dark
We study numerically the integrable turbulence developing from strongly nonlinear partially coherent waves, in the framework of the focusing one-dimensional nonlinear Schrodinger equation. We find that shortly after the beginning of motion the turbul
The small dispersion limit of the focusing nonlinear Schrodinger equation with periodic initial conditions is studied analytically and numerically. First, through a comprehensive set of numerical simulations, it is demonstrated that solutions arising